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Efficient Biclique Counting in Large Bipartite Graphs

XIAOWEI YE, RONG-HUA LI, QIANGQIANG DAI, HONGCHAO QIN, and
GUOREN WANG, Beijing Institute of Technology, China

A (𝑝, 𝑞)-biclique is a complete subgraph (𝑋,𝑌 ) that |𝑋 | = 𝑝, |𝑌 | = 𝑞. Counting (𝑝, 𝑞)-bicliques in bipartite

graphs is an important operator for many bipartite graph analysis applications. However, getting the count of

(𝑝, 𝑞)-bicliques for large 𝑝 and 𝑞 (e.g., 𝑝, 𝑞 ≥ 10) is extremely difficult, because the number of (𝑝, 𝑞)-bicliques
increases exponentially with respect to 𝑝 and 𝑞. The state-of-the-art algorithm for this problem is based on the

(𝑝, 𝑞)-biclique enumeration technique which is often costly due to the exponential blowup in the enumeration

space of (𝑝, 𝑞)-bicliques. To overcome this problem, we first propose a novel exact algorithm, called EPivoter,
based on a newly-developed edge-pivoting technique. The striking feature of EPivoter is that it can count

(𝑝, 𝑞)-bicliques for all pairs of (𝑝, 𝑞) using a combinatorial technique, instead of exhaustively enumerating all

(𝑝, 𝑞)-bicliques. Second, we propose a novel dynamic programming (DP) based ℎ-zigzag sampling technique

to provably approximate the count of the (𝑝, 𝑞)-bicliques for all pairs of (𝑝, 𝑞), where an ℎ-zigzag is an ordered

simple path in 𝐺 with length 2ℎ − 1 (ℎ = min{𝑝, 𝑞}). We show that our DP-based sampling technique is very

efficient. Third, to further improve the efficiency, we also propose a hybrid framework that integrates both the

exact EPivoter algorithm and sampling-based algorithms. Extensive experiments on 7 real-world graphs show

that our algorithms are several orders of magnitude faster than the state-of-the-art algorithm.
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1 INTRODUCTION
Given a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸) which comprises two disjoint vertex sets 𝑈 and 𝑉 and an edge

set 𝐸 ⊆ 𝑈 ×𝑉 . A (𝑝, 𝑞)-biclique in𝐺 is a complete subgraph𝐶 (𝐿, 𝑅) of𝐺 with |𝐿 | = 𝑝 , |𝑅 | = 𝑞, and
∀(𝑢, 𝑣) ∈ 𝐿 × 𝑅, (𝑢, 𝑣) ∈ 𝐸. In this paper, we focus on the problem of counting (𝑝, 𝑞)-bicliques for
every pairs of 𝑝 and 𝑞. Counting the bicliques in a bipartite graph is a fundamental operator for

many higher-order bipartite graph analysis applications. We give two concrete examples as follows.

Higher-order clustering coefficient. The higher-order clustering coefficient based on traditional

𝑘-clique [37, 38] is an important metric to analyze the statistical properties of complex networks. It

was shown in [37] that networks from the same domain often have similar higher-order clustering

coefficient characteristics. As indicated in [37, 38], such a higher-order clustering coefficient can be

easily extended to bipartite graphs. Specifically, in bipartite graphs, the higher-order clustering
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coefficient can be defined as the ratio between the counts of (𝑝, 𝑞)-bicliques and (𝑝, 𝑞)-wedges,
where a (𝑝, 𝑞)-wedge𝐺 (𝑈𝑊 ,𝑉𝑊 , 𝐸𝑊 ) is a connected non-induced subgraph that contains a (𝑝−1, 𝑞)-
biclique (or (𝑝, 𝑞 − 1)-biclique) and one additional vertex 𝑢 ∈ 𝑈𝑊 (or 𝑣 ∈ 𝑉𝑊 ) which connects at

least one vertex in 𝑉𝑊 (or𝑈𝑊 ). Such a higher-order clustering coefficient measures the probability

of a (𝑝, 𝑞)-wedges becoming a (𝑝, 𝑞)-biclique, and it can characterize the internal nature of the

bipartite graph data (as confirmed in our experiments). Since the count of (𝑝, 𝑞)-wedges can be

efficiently computed from the count of (𝑝, 𝑞)-bicliques (as shown in Section 8), the key to compute

the higher-order clustering coefficient in bipartite graph is to count the (𝑝, 𝑞)-bicliques.
Higher-order densest subgraph mining. Finding the densest subgraph from a graph is a funda-

mental graph ming operator. Recent studies focus mainly on mining higher-order densest subgraph

based on 𝑘-cliques on traditional graphs [11, 26, 28] and based on (𝑝, 𝑞)-bicliques on bipartite graphs
[21], because such a higher-order densest subgraph is often a quasi-clique [21, 28] which is very

useful for network analysis applications. In bipartite graphs, the (𝑝, 𝑞)-biclique densest subgraph is

a subgraph with the maximum (𝑝, 𝑞)-biclique density, which is defined as the ratio between the

count of (𝑝, 𝑞)-bicliques in a subgraph 𝑆 and the number of vertices in 𝑆 [21]. The exact algorithm

to compute the (𝑝, 𝑞)-biclique densest subgraph is based on a parametric max-flow procedure,

which is often intractable for large bipartite graphs [21]. To obtain a practical solution, we can

develop a peeling algorithm (as used in [11, 28] for traditional graphs) by iteratively removing

the vertex that has the minimum (𝑝, 𝑞)-biclique count. Clearly, such a peeling algorithm needs to

frequently count the number of (𝑝, 𝑞)-bicliques of each vertex. Thus, an efficient approach to count

the (𝑝, 𝑞)-bicliques is crucial for mining the (𝑝, 𝑞)-biclique densest subgraph in bipartite graphs.

Despite of the practical importance of (𝑝, 𝑞)-biclique counting, we still lack efficient algorithms

to count all bicliques in large bipartite graphs, due to the intrinsic hardness of the biclique counting

problem. Indeed, real-world bipartite graphs often contain a huge number of (𝑝, 𝑞)-bicliques even
for very small 𝑝 and 𝑞. For example, Fig. 1 shows the number of bicliques contained in 7 real-world

bipartite graphs given that 𝑝 = 4. As can be seen, the number of bicliques with 𝑝 = 4 can be more

than 10
39
in a medium-sized graph Twitter (|𝑈 | = 175, 214, |𝑉 | = 530, 418, and |𝐸 | = 1, 890, 661). As

a consequence, it is often intractable to count all (𝑝, 𝑞)-bicliques for relatively large 𝑝 and 𝑞 in large

graphs.

The state-of-the-art algorithm to count the (𝑝, 𝑞)-biclique is based on a backtracking enumeration

technique [34]. The basic idea of this algorithm is to maintain a sub-biclique and recursively add

the vertices from the candidate set (the common neighbors of the vertices in the sub-biclique) into

the sub-biclique to generate a larger biclique. The limitations of this algorithm are twofold: (1)

it needs to enumerate all (𝑝, 𝑞)-bicliques to get the (𝑝, 𝑞)-biclique count which is very costly for

relatively large 𝑝 and 𝑞; and (2) it is mainly tailored for counting (𝑝, 𝑞)-bicliques for only a pair of

(𝑝, 𝑞), and is often intractable to count the bicliques for all possible pairs of (𝑝, 𝑞).
To overcome these limitations, we first propose a novel exact algorithm, called EPivoter, to count

all bicliques in a bipartite graph 𝐺 for all pairs of (𝑝, 𝑞). A striking feature of EPivoter is that it can
count all bicliques for all pairs of (𝑝, 𝑞) without exhaustively enumerating every biclique. To achieve

this, we first develop a novel edge-pivoting technique to enumerate maximal bicliques. With such

a powerful edge-pivoting technique, we can uniquely represent every biclique by using a set of

large bicliques (not necessarily maximal) which can be enumerated based on our edge-pivoting

technique. As a consequence, we can count all bicliques for all pairs of (𝑝, 𝑞) in those large bicliques
using a combinatorial counting method, instead of exhaustively enumerating each biclique. Since

enumerating those large bicliques is much cheaper than enumerating all bicliques, our algorithm is

often tractable to handle large bipartite graphs.
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Fig. 1. The counts of (𝑝, 𝑞)-bicliques for 𝑝 = 4
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Fig. 2. A running example

To improve the efficiency, we develop two novel sampling-based algorithms, called ZigZag and

ZigZag++, to estimate the counts of the bicliques for all pairs of (𝑝, 𝑞). Both ZigZag and ZigZag++
are based on a newly-developed ℎ-zigzag sampling technique, where an ℎ-zigzag is a vertex-ordered

simple path in𝐺 with length 2ℎ − 1 and ℎ = min{𝑝, 𝑞}. It is easy to see that any (𝑝, 𝑞)-biclique of𝐺
contains at least one ℎ-zigzag, thus we can estimate the number of (𝑝, 𝑞)-bicliques by sampling

ℎ-zigzags. To obtain uniform ℎ-zigzag samples, we propose a dynamic programming (DP) based

ℎ-zigzag counting and sampling algorithms. We show that the time complexity of our DP-based

sampling algorithm is bounded by 𝑂 (ℎ |𝐸 |), thus it is very efficient when ℎ is not very large. In

addition, to further improve the sampling performance, we also propose a hybrid framework by

integrating both our exact algorithm and sampling-based algorithms. The hybrid framework is

based on the following observation: the sampling-based algorithms often work well in the dense

region of the bipartite graph (because in the dense region, an ℎ-zigzag is likely to be contained in a

certain biclique, thus improving the sampling performance), while the exact algorithm performs

very well in the sparse region of the graph. Therefore, to achieve better performance, the hybrid

framework uses the exact algorithm to count bicliques in the sparse region of the graph, while

leverages the sampling-based algorithms to process the dense region of the graph. We also devise

an efficient and effective algorithm to partition the bipartite graph into a sparse region and a dense

region. The results of extensive experiments demonstrate the high efficiency of our solutions. Below,

we briefly summarize our contributions.

Novel exact algorithms.We proposed a novel EPivoter algorithm to count the (𝑝, 𝑞)-bicliques
for all pairs of (𝑝, 𝑞). The novelties of EPivoter are twofold: (1) it is the first algorithm that can

exactly count all bicliques without exhaustively enumerating each biclique; and (2) it relies on a

new edge-pivoting technique that can also be used to enumerate all maximal bicliques. We believe

that our edge-pivoting technique may be of independent interest.

Novel approximation algorithms. We develop two novel approximation algorithms ZigZag
and ZigZag++ to estimate the counts of all bicliques for all pairs of (𝑝, 𝑞). The novelties of our
two approximation algorithms lie in that (1) both of them are based on a new and efficient DP-

based ℎ-zigzag sampling technique, and (2) both of them are the first algorithm that can provably

approximate the number of (𝑝, 𝑞)-bicliques for all pairs of (𝑝, 𝑞). In addition, to further improve

the accuracy of the approximation algorithms, we also present a hybrid framework by integrating

our exact algorithm and approximation algorithms based on a carefully-designed graph partition

technique.

Extensive experiments. We conduct extensive experiments on 7 real-life bipartite graphs to

evaluate our algorithms. The results show that (1) our exact algorithm is very efficient to count all

bicliques and it is more than two orders magnitude faster than the state-of-the-art (SOTA) algorithm.

For example, on Actor2 (|𝑈 | = 303, 617, |𝑉 | = 896, 302, and |𝐸 | = 3, 782, 463), EPivoter takes only 49
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seconds to count all bicliques for all pairs of (𝑝, 𝑞), while the SOTA algorithm consumes 12,476

seconds.(2) All our approximation algorithms are not only very efficient but also pretty accurate to

estimate the counts of (𝑝, 𝑞)-bicliques with ℎ = min{𝑝, 𝑞} ≤ 10. For example, on Actor2, our best
approximation algorithm takes only 15 seconds, while the SOTA algorithm uses 9,015 seconds.

Moreover, the average estimator error of our best approximation algorithm can be lower than

0.7% on Actor2.(3) Even when estimating the count of the (𝑝, 𝑞)-bicliques for only one pair of

(𝑝, 𝑞), our exact and approximation algorithms are still much faster than the SOTA algorithm

for relatively large 𝑝 and 𝑞 (e.g., 𝑝 = 8 and 𝑞 = 8). In addition, we also conduct two application

experiments including the fast computation of higher-order clustering coefficient on bipartite

graphs and computing the (𝑝, 𝑞)-biclique densest subgraph by a newly-developed peeling-based

1

𝑝+𝑞 -approximate algorithm. The experiment results demonstrate the effectiveness of our biclique

counting techniques. We release our source code at https://github.com/LightWant/biclique.

2 PRELIMINARIES
Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a bipartite graph, where𝑈 and 𝑉 are two set of vertices and 𝐸 = {𝑒 (𝑢, 𝑣) |𝑢 ∈
𝑈 , 𝑣 ∈ 𝑉 } denotes the set of edges. For each vertex 𝑢 in 𝑈 (or 𝑉 ), its neighbors are 𝑁 (𝑢,𝐺) =
{𝑣 |𝑒 (𝑢, 𝑣) ∈ 𝐸}. For a vertex set 𝑆 , the set of the common neighbors of 𝑆 is defined as 𝑁 (𝑆,𝐺),
i.e., 𝑁 (𝑆,𝐺) = ∩𝑢∈𝑆𝑁 (𝑢,𝐺). Let 𝑑 (𝑢,𝐺) be the degree of 𝑢 in 𝐺 , i.e. 𝑑 (𝑢,𝐺) = |𝑁 (𝑢,𝐺) |. If the
context is clear, 𝑁 (𝑢,𝐺), 𝑁 (𝑆,𝐺) and 𝑑 (𝑢,𝐺) are abbreviated as 𝑁 (𝑢), 𝑁 (𝑆) and 𝑑 (𝑢), respectively.
In addition, we also define the set of neighbors of an edge 𝑒 (𝑢, 𝑣) ∈ 𝐸 denoted by 𝑁 (𝑒 (𝑢, 𝑣),𝐺) as
𝑁 (𝑒 (𝑢, 𝑣),𝐺) ≜ {𝑒 (𝑢′, 𝑣 ′) ∈ 𝐸 |𝑢′ ∈ 𝑁 (𝑣) \ {𝑢}, 𝑣 ′ ∈ 𝑁 (𝑢) \ {𝑣}}.
Denote by {𝑢1, 𝑢2, ..., 𝑢𝑛1

} ({𝑣1, 𝑣2, ..., 𝑣𝑛2
}) a non-decreasing ordering of vertices in 𝑈 (𝑉 ) with

respect to (w.r.t.) the vertices’ degrees (break ties by vertex IDs), where 𝑛1 = |𝑈 | (𝑛2 = |𝑉 |). For
convenience, we refer to such an ordering as a degree ordering ≺𝑑 . With such a degree ordering

≺𝑑 , we have 𝑑 (𝑢𝑖 ) ≤ 𝑑 (𝑢 𝑗 ) (𝑑 (𝑣𝑖 ) ≤ 𝑑 (𝑣 𝑗 )) for each 𝑢𝑖 and 𝑢 𝑗 (𝑣𝑖 and 𝑣 𝑗 ) if 𝑢𝑖 ≺𝑑 𝑢 𝑗 (𝑣𝑖 ≺𝑑 𝑣 𝑗 ). Then,
based on ≺𝑑 , we define the set of ordering neighbors of 𝑣 w.r.t. a reference vertex 𝑢𝑖 as 𝑁 >𝑢𝑖 (𝑣,𝐺) ≜
{𝑢 𝑗 |𝑒 (𝑢 𝑗 , 𝑣) ∈ 𝐸,𝑢𝑖 ≺𝑑 𝑢 𝑗 }, which includes the neighbors of 𝑣 in𝐺 with ranks higher than 𝑢𝑖 ’s rank

according to the degree ordering. Based on these definitions, we further define the set of ordering

neighbors of an edge 𝑒 (𝑢𝑖 , 𝑣 𝑗 ) as ®𝑁 (𝑒 (𝑢𝑖 , 𝑣 𝑗 )) ≜ {𝑒 (𝑢𝑖′ , 𝑣 𝑗 ′ ) ∈ 𝐸 |𝑢𝑖′ ∈ 𝑁 >𝑢𝑖 (𝑣 𝑗 ), 𝑣 𝑗 ′ ∈ 𝑁 >𝑣𝑗 (𝑢𝑖 )}.
Definition 2.1. Given a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸), a biclique in 𝐺 is a complete subgraph with a

pair of vertex sets (𝑋,𝑌 ) where 𝑋 ⊆ 𝑈 ,𝑌 ⊆ 𝑉 and ∀𝑢 ∈ 𝑋,∀𝑣 ∈ 𝑌, 𝑒 (𝑢, 𝑣) ∈ 𝐸.
A biclique is maximal if no vertex can be added into it to generate a larger biclique. A (𝑝, 𝑞)-

biclique (𝑋,𝑌 ) is a biclique with |𝑋 | = 𝑝 and |𝑌 | = 𝑞. In this paper, we investigate two problems

on (𝑝, 𝑞)-biclique counting: (1) the first problem is to compute the number of (𝑝, 𝑞)-bicliques in a

bipartite graph 𝐺 with a given 𝑝 and 𝑞; and (2) the second problem is to simultaneously count the

(𝑝, 𝑞)-bicliques in 𝐺 for every pair of 𝑝 and 𝑞.

As discussed in Section 1, the first problem is very hard for large 𝑝 and 𝑞 (e.g., 𝑝 ≥ 10, 𝑞 ≥ 10) due

to the exponential blowup of the biclique counts. For example, in the Twitter dataset (|𝑈 | = 175, 214,

|𝑉 | = 530, 418, |𝐸 | = 1, 890, 661), even for small 𝑝 and 𝑞, the number of (𝑝, 𝑞)-bicliques can be very

large (for 𝑝 = 2 and 𝑞 = 2, the (2, 2)-biclique count is more than 2 × 108; and for 𝑝 = 5 and 𝑞 = 5,

the (5, 5)-biclique count is around 1 × 1013). Clearly, the second problem is much more difficult

than the first problem, as it requires to count all (𝑝, 𝑞)-bicliques for every pair of 𝑝 and 𝑞.

3 THE PROPOSED EPIVOTER ALGORITHM
In this section, we propose a novel exact algorithm, called EPivoter, to count the (𝑝, 𝑞)-bicliques
for all 𝑝 and 𝑞. The EPivoter is inspired by the PIVOTER algorithm which was originally designed

to count the 𝑘-cliques in traditional graphs [13]. Specifically, PIVOTER uses the classic pivoting
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Algorithm 1: EPMBCE
Input: A bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸 )
Output: All maximal bicliques in𝐺

1 C ← ∅;
2 MBCE (𝑈 ,𝑉 , ∅, ∅) ;
3 return C ProcedureMBCE(𝐶𝑙 ,𝐶𝑟 , 𝑃𝑙 , 𝑃𝑟 )
4 Denote by𝐺 ′ (𝐶𝑙 ,𝐶𝑟 , 𝐸

′ ) the subgraph of𝐺 , where 𝐸′ = {𝑒 (𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝐶𝑙 , 𝑣 ∈ 𝐶𝑟 } ;
5 if 𝐸′ = ∅ then
6 if 𝐶𝑙 ≠ ∅ and𝐶𝑟 ≠ ∅ then Check(𝑃𝑙 ∪𝐶𝑙 , 𝑃𝑟 ) ; Check(𝑃𝑙 , 𝑃𝑟 ∪𝐶𝑟 ) ;
7 else Check(𝑃𝑙 ∪𝐶𝑙 , 𝑃𝑟 ∪𝐶𝑟 ) ;
8 return;

9 𝑒 (𝑢, 𝑣) ← max𝑒 (𝑢,𝑣) ∈𝐸′ |𝑁 (𝑒 (𝑢, 𝑣),𝐺 ′ ) | ;
10 if 𝐶𝑙 \ 𝑁 (𝑣) ≠ ∅ then Check(𝑃𝑙 ∪𝐶𝑙 , 𝑃𝑟 ) ;
11 if 𝐶𝑟 \ 𝑁 (𝑢 ) ≠ ∅ then Check(𝑃𝑙 , 𝑃𝑟 ∪𝐶𝑟 ) ;
12 Reset the IDs of vertices in𝐶𝑙 and𝐶𝑟 such that for each 𝑢′ ∈ 𝐶𝑙 \ 𝑁 (𝑣) , 𝑣′ ∈ 𝐶𝑟 \ 𝑁 (𝑢 ) , we have 𝑢′ < 𝑢′′ and 𝑣′ < 𝑣′′ if

𝑢′′ ∈ 𝐶𝑙 ∩ 𝑁 (𝑣) and 𝑣′′ ∈ 𝐶𝑟 ∩ 𝑁 (𝑢 ) ;
13 foreach 𝑒 (𝑢′, 𝑣′ ) ∈ 𝐸′ s.t. (𝑢′ ∉ 𝑁 (𝑣) or 𝑣′ ∉ 𝑁 (𝑢 ) ) do
14 𝐶′

𝑙
← 𝐶𝑙 ∩ 𝑁 >𝑢′ (𝑣′ ) ;𝐶′𝑟 ← 𝐶𝑟 ∩ 𝑁 >𝑣′ (𝑢′ ) ;

15 MBCE(𝐶′
𝑙
,𝐶 ′𝑟 , 𝑃𝑙 ∪ {𝑢′ }, 𝑃𝑙 ∪ {𝑣′ }) ;

16 𝐶′
𝑙
← 𝐶𝑙 ∩ 𝑁 (𝑣) \ {𝑢};𝐶′𝑟 ← 𝐶𝑟 ∩ 𝑁 (𝑢 ) \ {𝑣} ;

17 MBCE(𝐶′
𝑙
,𝐶 ′𝑟 , 𝑃𝑙 ∪ {𝑢}, 𝑃𝑙 ∪ {𝑣}) ;

18 Procedure Check(𝑋,𝑌 )
19 if (𝑋,𝑌 ) is maximal then C ← C ∪ { (𝑋,𝑌 ) };

technique in maximal clique enumeration [7, 27] to generate a succinct clique tree (SCT) structure
which can uniquely encode every 𝑘-clique. Based on this SCT structure, PIVOTER then counts all

𝑘-cliques using a combinatorial counting method, instead of exhaustively enumerating all 𝑘-cliques.

However, extending the idea of PIVOTER for counting bicliques is quite non-trivial, because there

is no similar pivoting technique in existing maximal clique enumeration algorithms [1, 22, 39] that

can be used to construct a SCT-style structure. Moreover, even if we have a pivoting technique, the

construction of a unique representation for every (𝑝, 𝑞)-biclique is still very challenging, because

a biclique has two sides of vertices and both of them needs to be uniquely encoded. Indeed, as

we shown in Section 3.2, we need to consider 6 different and more complicated cases to encode

every (𝑝, 𝑞)-biclique, while it is sufficient to consider two simple cases to encode each 𝑘-clique in

PIVOTER [13] (i.e, a 𝑘-clique either contains the pivot vertex or not).

To overcome these problems, we first develop a new maximal biclique enumeration algorithm

with a carefully-designed edge-pivoting technique, which selects an edge for pivoting instead of a

vertex in each recursion. Based on this edge-pivoting technique, we then propose a representation

method that can uniquely encode every (𝑝, 𝑞)-clique. Armed with such a representation approach,

we are able to count the (𝑝, 𝑞)-bicliques for all 𝑝 and 𝑞 using a combinatorial counting method.

Below, we detail our solutions.

3.1 New maximal biclique enumeration algorithm
In this subsection, we propose a new backtracking algorithm called EPMBCE to enumerate all

maximal bicliques. The novelty of EPMBCE lies in the facts that (1) in each recursion, EPMBCE
selects an edge to expand the biclique, while all existing algorithms choose a vertex to expand the

biclique [1, 22, 39]; and (2) EPMBCE is integrated with a newly-developed edge-pivoting technique

to further reduce the search space.

Specifically, the basic idea of our algorithm is that for every maximal biclique (𝐿, 𝑅) of 𝐺 , it
(1) either contains an edge 𝑒 (𝑢, 𝑣) ∈ 𝐸, or (2) does not contain 𝑒 (𝑢, 𝑣). This indicates that we can
recursively divide the original problem into two sub-problems: the first one is to enumerate all
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maximal bicliques containing 𝑒 (𝑢, 𝑣), and the other one is to enumerate all maximal bicliques

excluding 𝑒 (𝑢, 𝑣).
However, such a basic algorithm may generate many non-maximal bicliques, which leads to

redundant calculations. This is because for any non-maximal biclique, it also satisfies the property

that it either contains an edge 𝑒 (𝑢, 𝑣) or does not contain 𝑒 (𝑢, 𝑣). To reduce non-maximal bicliques

explored by the enumeration procedure, we further present a novel edge-pivoting technique, which

is shown in the following theorem. Due to the space limit, we mainly give the proof sketches for

our results, and the complete proofs are given in the full version of this paper [4].

Theorem 3.1. Given a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸) with |𝐸 | > 0. If we choose an edge 𝑒 (𝑢, 𝑣) ∈ 𝐸
as the pivot edge, every maximal biclique must contain at least one edge in {𝑒 (𝑢, 𝑣)} ∪ {𝑒 (𝑢′, 𝑣 ′) ∈
𝐸 |𝑢′ ∉ 𝑁 (𝑣) or 𝑣 ′ ∉ 𝑁 (𝑢)}.
Proof sketch. The maximal bicliques that do not contain 𝑒 (𝑢, 𝑣) must contain at least one edge

in {𝑒 (𝑢′, 𝑣 ′) ∈ 𝐸 |𝑢′ ∉ 𝑁 (𝑣) or 𝑣 ′ ∉ 𝑁 (𝑢)}, otherwise adding 𝑒 (𝑢, 𝑣) to them will generate larger

bicliques. □
Equipped with Theorem 3.1, we can easily derive that for any maximal biclique in 𝐺 , it either

contains an edge 𝑒 (𝑢, 𝑣), or contains an edge 𝑒 (𝑢′, 𝑣 ′) with 𝑢′ ∉ 𝑁 (𝑣) or 𝑣 ′ ∉ 𝑁 (𝑢). Based on this,

we can develop an edge-pivoting technique to further improve our basic edge-based enumeration

algorithm. Specifically, we first select an edge 𝑒 (𝑢, 𝑣) in 𝐸 as a pivot, and then find all maximal

bicliques in 𝐺 by only enumerating the maximal bicliques containing each edge in {𝑒 (𝑢, 𝑣)} ∪
{𝑒 (𝑢′, 𝑣 ′) ∈ 𝐸 |𝑢′ ∉ 𝑁 (𝑣) or 𝑣 ′ ∉ 𝑁 (𝑢)}. The detailed pseudo-code is shown in Algorithm 1.

In Algorithm 1, it invokes the MBCE procedure to recursively enumerate all maximal bicliques

(line 2). Specifically, MBCE admits four parameters 𝐶𝑙 , 𝐶𝑟 , 𝑃𝑙 , and 𝑃𝑙 , where (𝑃𝑙 ⊂ 𝑈 , 𝑃𝑟 ⊂ 𝑉 ) is
the partial biclique, and (𝐶𝑙 ,𝐶𝑟 ) is the candidate set such that every vertex 𝑢 ∈ 𝐶𝑙 (𝑣 ∈ 𝐶𝑟 ) can be

added to 𝑃𝑙 (𝑃𝑟 ) to form a larger biclique. Let 𝐸′ be the set of edges in the subgraph𝐺 ′ of𝐺 induced

by the candidate sets (𝐶𝑙 ,𝐶𝑟 ) (line 4). If 𝐸′ is empty (line 5), the algorithm first determines whether

the candidate sets are empty, and then adds the non-empty candidate sets into the current biclique

to generate a larger biclique and also checks the maximality of the generated bicliques (lines 6-7).

After that, the algorithm can terminate the current recursion, as in this case no pivot can be used

to further branching (line 8). If 𝐸′ is non-empty, the algorithm chooses the edge 𝑒 (𝑢, 𝑣) which has

the maximum number of neighbors in the candidate set as the pivot edge (line 9), because such a

pivot edge can prune the most number of candidates. Then, according to Theorem 3.1, each edge

in {𝑒 (𝑢, 𝑣)} ∪ {𝑒 (𝑢′, 𝑣 ′) ∈ 𝐸′ |𝑢′ ∉ 𝑁 (𝑣) or 𝑣 ′ ∉ 𝑁 (𝑢)} can be used to expand the current partial

biclique (𝑃𝑙 , 𝑃𝑟 ), and the corresponding sub-recursive calls are further invoked to continue the

enumeration (lines 13-15 correspond to the case of including a non-neighbor edge and lines 16-17

correspond to the case of including the pivot edge). The notation 𝑁 >𝑢′ (𝑣 ′) and 𝑁 >𝑣′ (𝑢′) in line 14

is the set of ordering neighbors {𝑢 𝑗 |𝑒 (𝑢 𝑗 , 𝑣 ′) ∈ 𝐸,𝑢′ ≺ 𝑢 𝑗 } and {𝑣 𝑗 |𝑒 (𝑢′, 𝑣 𝑗 ) ∈ 𝐸, 𝑣 ′ ≺ 𝑣 𝑗 } defined in

Section 2. Note that in line 19, the algorithm can check the maximality using existing techniques in

maximal biclique enumeration algorithms [1, 22, 39]. The correctness of Algorithm 1 is shown in

the following theorem.

Theorem 3.2. Algorithm 1 correctly outputs all maximal bicliques of a given bipartite graph 𝐺 .

Proof sketch. According to Theorem 3.1, (𝑋,𝑌 ) must (1) contain 𝑒𝑝 , or (2) at least a non-neighbor

of 𝑒𝑝 . For the case (1), line 17 in Algorithm 1 enumerates the maximal bicliques in the neighbors of

𝑒𝑝 . For the case (2), lines 10, 11 and 15 enumerates the maximal bicliques containing non-neighbors

of 𝑒𝑝 . □
Based on the results established in [27], we can derive the time and space of Algorithm 1 as

shown in the following theorem.
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Algorithm 2: Unique representation of each biclique

Input: A bipartite graph𝐺 (𝑈 ,𝑉 , 𝐸 )
Output: The unique representation for each biclique

1 BCEUnique(𝑈 ,𝑉 , ∅, ∅, ∅, ∅) ;
2 Procedure BCEUnique(𝐶𝑙 ,𝐶𝑟 , 𝑃𝑙 , 𝐻𝑙 , 𝑃𝑟 , 𝐻𝑟 )
3 Denote by𝐺 ′ (𝐶𝑙 ,𝐶𝑟 , 𝐸

′ ) the subgraph of𝐺 , where 𝐸′ = {𝑒 (𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝐶𝑙 , 𝑣 ∈ 𝐶𝑟 } ;
4 if 𝐸′ = ∅ then
5 if 𝐶𝑙 ≠ ∅ and𝐶𝑟 ≠ ∅ then
6 Represent(𝑃𝑙 ∪𝐶𝑙 , 𝐻𝑙 , 𝑃𝑟 , 𝐻𝑟 ) ;
7 for each non-empty subset set 𝑆 of𝐶𝑟 do Represent(𝑃𝑙 , 𝐻𝑙 , 𝑃𝑟 , 𝐻𝑟 ∪ 𝑆 ) ;
8 else Represent(𝑃𝑙 ∪𝐶𝑙 , 𝐻𝑙 , 𝑃𝑟 ∪𝐶𝑟 , 𝐻𝑟 ) ;
9 return;

10 𝑒 (𝑢, 𝑣) ← max𝑒 (𝑢,𝑣) ∈𝐸′ |𝑁 (𝑒 (𝑢, 𝑣),𝐺 ′ ) | ;
11 Reset the IDs of vertices in𝐶𝑙 and𝐶𝑟 such that for each 𝑢′ ∈ 𝐶𝑙 ∩ 𝑁 (𝑣) , 𝑣′ ∈ 𝐶𝑟 ∩ 𝑁 (𝑢 ) , we have 𝑢′ < 𝑢′′ and 𝑣′ < 𝑣′′ if

𝑢′′ ∈ 𝐶𝑙 ∩ 𝑁 (𝑣) and 𝑣′′ ∈ 𝐶𝑟 ∩ 𝑁 (𝑢 ) ;
12 foreach 𝑒 (𝑢′, 𝑣′ ) ∈ 𝐸′ s.t. (𝑢′ ∉ 𝑁 (𝑣) or 𝑣′ ∉ 𝑁 (𝑢 ) ) do
13 𝐶′

𝑙
← 𝐶𝑙 ∩ 𝑁 >𝑢′ (𝑣′ ) ;𝐶′𝑟 ← 𝐶𝑟 ∩ 𝑁 >𝑣′ (𝑢′ ) ;

14 BCEUnique(𝐶′
𝑙
,𝐶 ′𝑟 , 𝑃𝑙 , 𝐻𝑙 ∪ {𝑢′ }, 𝑃𝑟 , 𝐻𝑟 ∪ {𝑣′ }) ;

15 𝐶′
𝑙
← 𝐶𝑙 ∩ 𝑁 (𝑣) \ {𝑢};𝐶′𝑟 ← 𝐶𝑟 ∩ 𝑁 (𝑢 ) \ {𝑣};

16 BCEUnique(𝐶′
𝑙
,𝐶′𝑟 , 𝑃𝑙 ∪ {𝑢}, 𝐻𝑙 , 𝑃𝑟 ∪ {𝑣}, 𝐻𝑟 ) ;

17 foreach 𝑤 ∈ 𝐶𝑙 \ 𝑁 (𝑣) do
18 𝐶𝑙 ← 𝐶𝑙 \ {𝑤}; Represent(𝑃𝑙 ∪𝐶𝑙 , 𝐻𝑙 ∪ {𝑤}, 𝑃𝑟 , 𝐻𝑟 ) ;
19 foreach 𝑤 ∈ 𝐶𝑟 \ 𝑁 (𝑢 ) do
20 𝐶𝑟 ← 𝐶𝑟 \ {𝑤}; Represent(𝑃𝑙 , 𝐻𝑙 , 𝑃𝑟 ∪𝐶𝑟 , 𝐻𝑟 ∪ {𝑤}) ;

21 Procedure Represent(𝑃𝑙 , 𝐻𝑙 , 𝑃𝑟 , 𝐻𝑟 )
22 foreach subset 𝑋 of 𝑃𝑙 do
23 foreach subset 𝑌 of 𝑃𝑟 do
24 (𝑋 ∪𝐻𝑙 , 𝑌 ∪𝐻𝑟 ) is a unique biclique;

Theorem 3.3. Given a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸), the worst-case time and space complexity of
Algorithm 1 is𝑂 (3 |𝐸 |/3) and𝑂 ( |𝐸 | + |𝑈 | + |𝑉 | + 𝑑2

max
) respectively, where 𝑑max is the maximal degree

among all vertices.

Proof sketch. By applying the results established in [27], we can derive that the time complexity of

our algorithm is𝑂 (3 |𝐸 |/3). The search depth is bounded by𝑂 (𝑑max), and the space usage for storing
(𝐶𝑙 ,𝐶𝑟 ) is also 𝑂 (𝑑max), thus the space complexity of Algorithm 1 is 𝑂 ( |𝐸 | + |𝑈 | + |𝑉 | + 𝑑2

max
). □

3.2 Unique representation for each biclique
In this subsection, we establish a unique representation for each biclique based on our edge-pivoting

technique. Below, we first classify all bicliques into six categories based on the pivot edge, and then

we will show how to uniquely represent all these types of bicliques based on the edge-pivoting

technique.

Theorem 3.4. Let 𝑒𝑝 = 𝑒 (𝑢, 𝑣) be the pivot edge, and 𝑁 (𝑒𝑝 ,𝐺) be the set of neighbor edges of
𝑒𝑝 in 𝐺 . Then, each biclique (including (𝑝, 0)-biclique and (0, 𝑞)-biclique) must belong to one of the
following six categories.
(1) It contains 𝑢 and 𝑣 , and the other vertices are included in the subgraph induced by 𝑁 (𝑒𝑝 ,𝐺).
(2) It contains 𝑢 but 𝑣 , and the other vertices are included in the subgraph induced by 𝑁 (𝑒𝑝 ,𝐺).
(3) It contains 𝑣 but 𝑢, and the other vertices are included in the subgraph induced by 𝑁 (𝑒𝑝 ,𝐺).
(4) It does not contain 𝑢 or 𝑣 , while the other vertices are included in the subgraph induced by

𝑁 (𝑒𝑝 ,𝐺).
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(5) It only contains vertices in𝑈 (or 𝑉 ), and contains at least one vertex in𝑈 \ 𝑁 (𝑣) (or 𝑉 \ 𝑁 (𝑢)).
(6) It contains at least one vertex in 𝑈 \ 𝑁 (𝑣) or 𝑉 \ 𝑁 (𝑢), and includes at least one edge in
{𝑒 (𝑢′, 𝑣 ′) ∈ 𝐸 |𝑢′ ∉ 𝑁 (𝑣) or 𝑣 ′ ∉ 𝑁 (𝑢)}.

Proof sketch. The bicliques can be initially classified into two categories. The first category

contains at least one non-neighbor of 𝑒𝑝 and the second one does not. Cases (1)-(4) belong to the

first category. Cases (5)-(6) belong to the second category. Note that Case (5) only include the

(𝑝, 0)-bicliques and (0, 𝑞)-bicliques. □
Let𝐺 ′ be the subgraph of𝐺 (𝐶𝑙 ,𝐶𝑟 ) induced by 𝑁 (𝑒𝑝 ,𝐺 (𝐶𝑙 ,𝐶𝑟 )) (𝐺 (𝐶𝑙 ,𝐶𝑟 ) is a bipartite subgraph

of𝐺 induced by the candidate sets (𝐶𝑙 ,𝐶𝑟 )). By Theorem 3.4, any biclique of𝐺 is either contained in

𝐺 ′ ∪ {𝑒𝑝 } (cases (1)-(4)) or includes a vertex outside of𝐺 ′ ∪ {𝑒𝑝 } (cases (5)-(6)). It is easy to see that

all the bicliques belonging to cases (1)-(4) must be contained in the maximal bicliques enumerated

in the enumeration branch of Algorithm 1 that includes 𝑒𝑝 (line 17 of Algorithm 1). Similarly, we

can easily derive that each biclique belonging to case (6) must be contained in a maximal biclique

enumerated in the enumeration branch of Algorithm 1 that includes a non-neighbor edge of 𝑒𝑝
(lines 13-15 of Algorithm 1). Note that the bicliques belonging to case (5) are the (𝑝, 0)-bicliques
or (0, 𝑞)-bicliques. Such bicliques can be computed by using a combinatorial counting method,

because in Algorithm 1, these bicliques must be included in 𝐶𝑙 (or 𝐶𝑟 ) and contain at least one

vertex in 𝐶𝑙 \ 𝑁 (𝑣) (or 𝐶𝑙 \ 𝑁 (𝑢)) , where 𝑒 (𝑢, 𝑣) is the pivot edge.
Based on the above analysis, a unique representation for each biclique of𝐺 can be obtained based

on the enumeration tree generated by our edge-pivoting technique. Specifically, for the current

partial biclique (𝑃𝑙 , 𝑃𝑟 ) in each recursion of Algorithm 1, we divide the vertex set 𝑃𝑙 into two

subset 𝑃𝑙 and 𝐻𝑙 , where 𝑃𝑙 only contains the vertices of all the selected pivot edges (in the current

recursion, there may exist several pivot edges that have already added into (𝑃𝑙 , 𝑃𝑟 ) in the previous

recursions) and 𝐻𝑙 contains the remaining vertices in 𝑃𝑙 (i.e., 𝑃𝑙 = 𝑃𝑙 ∪𝐻𝑙 ). Similarly, we partition

𝑃𝑟 as 𝑃𝑟 and 𝐻𝑟 . With these notations, we can easily distinguish the bicliques. This is because

whenever a vertex in 𝑃𝑙 or 𝑃𝑟 is selected or not, it can yield a different biclique (cases (1)-(4) of

Theorem 3.4). In other words, any combination of the vertices in 𝑃𝑙 and 𝑃𝑟 can generate a different

biclique. Algorithm 2 gives a detailed implementation to uniquely represent the bicliques in 𝐺

based on our edge-pivoting technique.

The general procedure of Algorithm 2 is similar to Algorithm 1, as both of them are based on

our edge-pivoting technique. The main differences are summarized as follows. First, to maintain

the current partial biclique in each recursion, Algorithm 2 requires four sets 𝑃𝑙 , 𝑃𝑟 , 𝐻𝑙 and 𝐻𝑟 as

we defined before. The algorithm will add the vertices of pivot edges (or non-pivot edges) into 𝑃𝑙
and 𝑃𝑟 (or 𝐻𝑙 and 𝐻𝑟 ) for the next recursion (line 14 and 16). Second, when there is no edges in

the candidate set (𝐶𝑙 ,𝐶𝑟 ) (line 4), Algorithm 2 terminates the recursion and invokes the Represent
procedure to uniquely represent each biclique contained in the current enumerated biclique by
using a combinatorial technique (lines 21-24). For convenience, in Algorithm 2, we refer to the

input biclique of the Represent procedure, denoted by (𝑃𝑙 ∪𝐻𝑙 ∪𝐶𝑙 , 𝑃𝑟 ∪𝐻𝑟 ), as the enumerated
biclique. The set of all these enumerated bicliques uniquely encode every biclique in 𝐺 . Note that in

line 5 of Algorithm 2, when 𝐶𝑙 ≠ ∅ and 𝐶𝑟 ≠ ∅, there are two kinds of bicliques, one included in

(𝑃𝑙 ∪𝐻𝑙 ∪𝐶𝑙 , 𝑃𝑟 ∪𝐻𝑟 ) and the other contained in (𝑃𝑙 ∪𝐻𝑙 , 𝑃𝑟 ∪𝐻𝑟 ∪𝐶𝑟 ). Both of them can represent

the bicliques that are contained in (𝑃𝑙 ∪𝐻𝑙 , 𝑃𝑟 ∪𝐻𝑟 ). Therefore, after obtaining all bicliques included
in (𝑃𝑙 ∪𝐻𝑙 ∪𝐶𝑙 , 𝑃𝑟 ∪𝐻𝑟 ), the other bicliques must contain at least one vertex in𝐶𝑟 to avoid duplicate

representation (line 7). In addition, for the bicliques containing at least one vertex in 𝐶𝑙 \ 𝑁 (𝑣) (or
𝐶𝑟 \ 𝑁 (𝑢)), which corresponds to the bicliques belonging to the case (5) in Theorem 3.4, we also

need to invoke Represent to uniquely represent them (lines 17-20 of Algorithm 2). The following

theorem shows that every biclique in 𝐺 can be uniquely represented by Algorithm 2.
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Fig. 3. Illustration of the unique representation of each biclique

Theorem 3.5. Algorithm 2 uniquely represents every biclique in the bipartite graph 𝐺 .

Proof sketch. Since each biclique belongs to only one case among the 6 cases by Theorem 3.4,

each biclique exactly belongs to one branch in the search tree of Algorithm 2. □
The following example illustrates how Algorithm 2 works.

Example 3.6. Fig. 3 shows an example of the unique representation for every biclique. The seven

quadrille tables at the bottom of Fig. 3 are the 7 enumerated bicliques obtained by Algorithm 2,

which are input into the Represent procedure to represent all bicliques. Here we illustrate how

to get the first two enumerated bicliques. Initially, 𝑃𝑙 , 𝑃𝑟 , 𝐻𝑙 , 𝐻𝑟 are empty, 𝐶𝑙 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} and
𝐶𝑟 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}. First, suppose that 𝑒 (𝑢1, 𝑣1) is selected as the pivot edge. The vertices𝑢1 and 𝑣1 are
added into 𝑃𝑙 and 𝑃𝑟 respectively, and the candidate set is updated to (𝐶𝑙 ,𝐶𝑟 ) = ({𝑢2, 𝑢3, 𝑢4}, {𝑣2, 𝑣3}).
Then, the algorithm continues the recursive calls, and another pivot edge (𝑢2, 𝑣2), selected in the

subgraph of 𝐺 induced by (𝐶𝑙 ,𝐶𝑟 ), is further added into 𝑃𝑙 and 𝑃𝑟 . After that, we obtain a new

candidate set (𝐶𝑙 ,𝐶𝑟 ) = ({𝑢3}, {𝑣3}). In the next recursion with (𝑃𝑙 , 𝑃𝑟 ) = ({𝑢1, 𝑢2}, {𝑣1, 𝑣2}), there
does not exist an edge in the subgraph induced by (𝐶𝑙 ,𝐶𝑟 ). Thus, Algorithm 2 terminates, and

generates the enumerated bicliques. Since 𝐶𝑙 ≠ ∅ and 𝐶𝑟 ≠ ∅, the first enumerated biclique with
(𝑃𝑙 , 𝑃𝑟 ) = ({𝑢1, 𝑢2, 𝑢3}, {𝑣1.𝑣2}) and (𝐻𝑙 , 𝐻𝑟 ) = (∅, ∅) is directly obtained by pushing all vertices in

𝐶𝑙 into 𝑃𝑙 (line 5). Then, at least one vertex in𝐶𝑟 is required to add into 𝐻𝑟 (line 7). Thus, the second

enumerated biclique (𝑃𝑙 , 𝑃𝑟 ) = ({𝑢1, 𝑢2}, {𝑣1 .𝑣2}), (𝐻𝑙 , 𝐻𝑟 ) = (∅, {𝑣3}) is obtained.

3.3 The EPivoter algorithm
Recall that by Theorem 3.5, each biclique of𝐺 must be contained in a uniquely enumerated biclique
by Algorithm 2, where an enumerated biclique denoted by (𝑃𝑙 ∪ 𝐻𝑙 , 𝑃𝑟 ∪ 𝐻𝑟 ) is an input biclique

of the Represent procedure of Algorithm 2 (line 21). In this subsection, we propose an algorithm

called EPivoter to count the (𝑝, 𝑞)-cliques for all 𝑝 and 𝑞 using a combinatorial counting method

based on Algorithm 2.

The EPivoter algorithm is outlined in Algorithm 3. The main framework of Algorithm 3 is

basically the same as that of Algorithm 2. There are two main differences. First, when obtaining

an enumerated biclique (𝑃𝑙 ∪ 𝐻𝑙 , 𝑃𝑟 ∪ 𝐻𝑟 ), we count the (𝑝, 𝑞)-bicliques contained in it using a

combinatorial counting method, since each subset of 𝑃𝑙 and 𝑃𝑟 with size 𝑝 − |𝐻𝑙 | and 𝑞 − |𝐻𝑟 |
respectively can yield a different (𝑝, 𝑞)-biclique, i.e., the number of (𝑝, 𝑞)-bicliques is exactly equal

to

( |𝑃𝑙 |
𝑝−|𝐻𝑙 |

) ( |𝑃𝑟 |
𝑞−|𝐻𝑟 |

)
(line 7 and lines 14-15). Second, Algorithm 3 uses a degree-ordering based

optimization technique to further improve the efficiency. The key idea of the degree-ordering

technique is that for each enumerated biclique, there always exists an edge whose two end-vertices

have the lowest ranks in terms of the degree ordering. That implies that every enumerated biclique
can be identified by the enumeration algorithm that only considers the edges whose end-vertices

with ranks no less than the lowest rank, instead of considering all edges in the graph. Specifically,
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Algorithm 3: EPivoter
Input: A bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸 ) .
Output: The count of (𝑝,𝑞)-bicliques (𝐶𝑝,𝑞 ) for every 𝑝 and 𝑞 in𝐺 .

1 Sort all vertices in𝑈 and𝑉 in a non-decreasing order of degree;

2 foreach 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
3 BCCounting(𝑁 >𝑢 (𝑣), 𝑁 >𝑣 (𝑢 ), ∅, ∅, {𝑢}, {𝑣}) ;
4 Procedure BCCounting(𝐶𝑙 ,𝐶𝑟 , 𝑃𝑙 , 𝑃𝑟 , 𝐻𝑙 , 𝐻𝑟 )
5 if 𝐸′ = ∅ then
6 if 𝐶𝑙 ≠ ∅ and𝐶𝑟 ≠ ∅ then
7 Count(𝑃𝑙 ∪𝐶𝑙 , 𝐻𝑙 , 𝑃𝑟 , 𝐻𝑟 ) ;
8 for 𝑖 = 1 to |𝐶𝑟 | do
9 /*choose 𝑖 vertices of𝐶𝑟 to add into 𝐻𝑟 */

10 foreach 𝑝 ≥ |𝐻𝑙 |, 𝑞 ≥ |𝐻𝑟 | + 𝑖 do 𝐶𝑝,𝑞 ← 𝐶𝑝,𝑞 +
( |𝑃𝑙 |
𝑝−|𝐻𝑙 |

) ( |𝑃𝑟 |
𝑞−|𝐻𝑟 |−𝑖

) ( |𝐶𝑟 |
𝑖

)
;

11 else Count(𝑃𝑙 ∪𝐶𝑙 , 𝐻𝑙 , 𝑃𝑟 ∪𝐶𝑟 , 𝐻𝑟 ) ;
12 return;

13 Lines 10-22 of Algorithm 2 ( replace the Represent procedure in Algorithm 2 by the Count procedure);

14 Procedure Count(𝑃𝑙 , 𝐻𝑙 , 𝑃𝑟 , 𝐻𝑟 )
15 foreach 𝑝 ≥ |𝐻𝑙 |, 𝑞 ≥ |𝐻𝑟 | do 𝐶𝑝,𝑞 ← 𝐶𝑝,𝑞 +

( |𝑃𝑙 |
𝑝−|𝐻𝑙 |

) ( |𝑃𝑟 |
𝑞−|𝐻𝑟 |

)
;

in the top recursive call of Algorithm 3, for each edge 𝑒 (𝑢, 𝑣), we only need to explore the subgraph

induced by the set of ordering neighbors of 𝑒 (𝑢, 𝑣) ∈ 𝐸 (by the degree ordering) to compute the

count of every biclique containing 𝑢 and 𝑣 , instead of exploring the whole graph 𝐺 (lines 1-3).

Clearly, the correctness of Algorithm 3 can be guaranteed by Theorem 3.5. The time and space

complexity of Algorithm 3 is given as follows.

Theorem 3.7. The worst-case time and space complexity of Algorithm 3 is 𝑂 ( |𝐸 |3 |𝐸max |/3) and
𝑂 ( |𝐸 | + |𝑈 | + |𝑉 | + 𝑑2

max
) respectively, where |𝐸max | = max | ®𝑁 (𝑒) |,∀𝑒 ∈ 𝐸.

Proof sketch. Algorithm 3 takes 𝑂 (3 | ®𝑁 (𝑒 ) |/3) to process the subgraph induced by the ordering

neighbors of each edge by Theorem 3.3. Thus, the total running time is 𝑂 (∑𝑒∈𝐸 3
| ®𝑁 (𝑒 ) |/3). □

Note that if we only need to count the (𝑝, 𝑞)-bicliques for a given 𝑝 and 𝑞 (not for all 𝑝 and 𝑞),

we can further improve Algorithm 3. Specifically, if the parameters satisfy one of the following

conditions |𝐻𝑙 | > 𝑝 , |𝐻𝑟 | > 𝑞, |𝑃𝑙 ∪𝐻𝑙 ∪𝐶𝑙 | < 𝑝 or |𝑃𝑟 ∪𝐻𝑟 ∪𝐶𝑟 | < 𝑞, we can safely terminate this

recursion. Algorithm 3 can also be easily extended to count the bicliques with size constraints. We

can prune the branch if |𝑃𝑙 ∪ 𝐻𝑙 ∪𝐶𝑙 | < 𝑝 or |𝑃𝑟 ∪ 𝐻𝑟 ∪𝐶𝑟 | < 𝑞 and add a preprocessing step to

shrink the input graph into a (𝑝, 𝑞)-core [19, 32].
The choice of 𝑝 and 𝑞 in practice. For practical applications, the values of 𝑝 and 𝑞 are often not

very large, because small motifs are often the building blocks of large networks [20]. For example,

only the count of (2, 2)-bicliques is useful in measuring the Triadic Closure of networks [29]. In
application of detecting (𝑝, 𝑞)-biclique densest subgraph [21], both 𝑝 and 𝑞 are often set no larger

than 5. In some cases, (𝑝, 𝑞) can be imbalanced, i.e., the value of 𝑝 and 𝑞 differs. For instance, [34]

shows that (5, 10)-bicliques and (4, 10)-bicliques achieve the the best performance in application of

optimizing the performance of graph neural network training. As a result, we recommend to set 𝑝

and 𝑞 no larger than 10 for many practical applications.

Discussions. The challenge of the biclique counting problem is that a (𝑝, 𝑞)-biclique can be located

in many maximal bicliques. Since the overlap relationships among the maximal bicliques are very

complicated, it is extremely hard to apply the Inclusion-Exclusion technique to exactly derive the

(𝑝, 𝑞)-biclique counts from the maximal bicliques. To overcome this challenge, we propose an edge-

pivoting based enumeration technique (i.e., Algorithm 3) that can uniquely encode each biclique,

thus our technique can avoid repeatedly counting. Compared to the state-of-the-art algorithm
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which needs to exhaustively enumerate every (𝑝, 𝑞)-biclique, Algorithm 3 only enumerates the

large bicliques (i.e., the enumerated bicliques) and then count the (𝑝, 𝑞)-bicliques in the enumerated
bicliques using a combinatorial counting method. Moreover, once obtaining the enumerated bicliques,
our algorithm can compute all biclique counts for all parameters 𝑝 and 𝑞, while the state-of-the-art

algorithm can only obtain one count of the (𝑝, 𝑞)-cliques for a given (𝑝, 𝑞) pair.
It is worth mentioning that existing motif counting techniques are not suitable for counting the

bicliques because those techniques (e.g., edge-based sampling technique [2]) only work well for

small motifs (e.g., the size smaller than 10). Moreover, those techniques are not tailored to biclique

counting, thus they are likely worse than the existing highly-optimized biclique counting technique

proposed in [34]. In addition, existing maximal biclique enumeration algorithms [1, 8, 16, 39] are

also not suitable for counting bicliques because these algorithms are based on enumerating vertices

of only one side. The vertex-based pivoting technique in these maximal biclique enumeration

algorithms is not easily adapted to count bicliques. The reason is as follows: an edge-based pivot

has neighbors on each side, thus it can easily encode vertices on both two sides. However, the

vertex-based pivot is located on only one side, and it cannot encode both two sides as our edge-based

pivot does. To our knowledge, our edge-pivoting based technique is novel and it has not been

studied previously.

4 THE ZIG-ZAG SAMPLING ALGORITHMS
In this section, we develop several novel approximate algorithms based on a carefully-designed

zig-zag sampling technique, which can obtain an unbiased estimator for all bicliques within polyno-

mial time. Below, we give a new concept called ℎ-zigzag which is crucial for devising our sampling

algorithms. For convenience, in the rest of this paper, we assume without loss of generality that the

vertices in each side of the bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) are sorted in a non-decreasing ordering

based on their degrees, i.e., 𝑢1 ≺𝑑 𝑢2 ≺𝑑 · · · ≺𝑑 𝑢𝑛1
and 𝑣1 ≺𝑑 𝑣2 ≺𝑑 · · · ≺𝑑 𝑣𝑛2

.

Definition 4.1. Given a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸) and an integer ℎ, a ℎ-zigzag in 𝐺 is an ordered
simple path 𝑃 = {𝑢𝑖1 , 𝑣 𝑗1 , 𝑢𝑖2 , 𝑣 𝑗2 ,..., 𝑢𝑖ℎ , 𝑣 𝑗ℎ } that satisfies (1) its length equaling 2ℎ − 1, and (2)

𝑖1 < · · · < 𝑖ℎ and 𝑗1 < · · · < 𝑗ℎ .

By Definition 4.1, an ℎ-zigzag contains ℎ vertices on each side of the bipartite graph, and

the vertices in the ℎ-zigzag follow the degree ordering ≺𝑑 . The following lemma establishes a

relationship between the ℎ-zigzag and the (𝑝, 𝑞)-clique.

Lemma 4.2. Given a (𝑝, 𝑞)-biclique of 𝐺 with 𝑝 ≤ 𝑞, it exactly contains
(𝑞
ℎ

)
ℎ-zigzags, if ℎ = 𝑝 .

Proof sketch. It is easy to see that any ℎ vertices selected from 𝑅 will form a ℎ-zigzag. Thus, a

(𝑝, 𝑞)-biclique contains
(𝑞
ℎ

)
ℎ-zigzags. □

For convenience, in the rest of this section, we focus mainly on counting the (𝑝, 𝑞)-bicliques
with 𝑝 ≤ 𝑞, because the same proposed technique can also be used to count the (𝑝, 𝑞)-bicliques
with 𝑝 > 𝑞. LetH be the set of all ℎ-zigzags in 𝐺 , and T be the set of uniform ℎ-zigzags sampled

from H . Denote by 𝑍𝑖 the 𝑖-th ℎ-zigzag in T , where 1 ≤ 𝑖 ≤ |T |. For each 𝑍𝑖 ∈ T , the count of
the (𝑝, 𝑞)-bicliques in 𝐺 that contain 𝑍𝑖 is denoted as 𝑐𝑝,𝑞 (𝑍𝑖 ). Then, based on Lemma 4.2, we can

derive the following lemma.

Lemma 4.3. Let 𝑍 be an ℎ-zigzag uniformly sampled fromH . The probability of each (𝑝, 𝑞)-biclique
of 𝐺 containing 𝑍 is

(𝑞
ℎ

)
/|H |, where ℎ = 𝑝 .

Proof sketch.A (𝑝, 𝑞)-biclique contains
(𝑞
ℎ

)
ℎ-zigzags (Lemma. 4.2), thus the probability is

(𝑞
ℎ

)
/|H |.□
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Based on Lemma 4.3, we can construct an unbiased estimator for the count of (𝑝, 𝑞)-biclique by
uniformly sampling ℎ-zigzag in 𝐺 .

Theorem 4.4. Denote by B𝑝,𝑞 the set of (𝑝, 𝑞)-bicliques. Suppose that T is set of ℎ-zigzags (ℎ = 𝑝)
sampled uniformly from 𝐺 . Then, the unbiased estimator of the count of (𝑝, 𝑞)-bicliques in 𝐺 , denoted
by ˆ|B𝑝,𝑞 |, is ˆ|B𝑝,𝑞 | =

|H |∑𝑍 ∈T 𝑐𝑝,𝑞 (𝑍 )
| T | (𝑞ℎ)

.

Proof sketch.We can first derive

∑
𝑍 ∈H 𝑐𝑝,𝑞 (𝑍 ) =

(𝑞
ℎ

)
|B𝑝,𝑞 | by definition. Then, we have𝐸 [𝑐𝑝,𝑞 (𝑍 )] =

(𝑞ℎ) | B𝑝,𝑞 |
|H | . Based on this, we have 𝐸 [ ˆ|B𝑝,𝑞 |] = 𝐸 [

|H |∑|T |
𝑖=1

𝑐𝑝,𝑞 (𝑍 )
| T | (𝑞ℎ)

] = |H |
| T | (𝑞ℎ)

∑ | T |
1=1

𝐸 [𝑐𝑝,𝑞 (𝑍 )] = |𝐵𝑝,𝑞 |.
Armed with Theorem 4.4, we can estimate the number of (𝑝, 𝑞)-cliques by uniformly sampling

ℎ-zigzags from 𝐺 . The remaining issues are: (1) how to uniformly sample ℎ-zigzag from the graph

𝐺 ; and (2) how to compute the total number of ℎ-zigzags in 𝐺 . Below, we will propose a novel and

efficient dynamic programming (DP) algorithm to tackle these issues.

4.1 The DP-based zig-zag sampler

Counting the number of ℎ-zigzags. Let 𝑍 = {𝑢1, 𝑣1, ..., 𝑢ℎ, 𝑣ℎ} be an ℎ-zigzag in 𝐺 , we have

𝑢𝑖 ≺𝑑 𝑢𝑖+1 and 𝑣𝑖 ≺𝑑 𝑣𝑖+1 for each 1 ≤ 𝑖 ≤ ℎ − 1. Thus, the total number of ℎ-zigzags of 𝐺 can

be calculated by counting the ℎ-zigzags starting with each vertex 𝑢𝑖 in 𝑈 . Denote the number of

zig-zag paths with length 𝑖 starting from the edge 𝑒 (𝑢, 𝑣) by 𝑑𝑝 [𝑖] [𝑒 (𝑢, 𝑣)]. The number of ℎ-zigzags

starting from 𝑢 is equal to

∑
𝑣∈𝑁 (𝑢 ) 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣)]. As a result, the total number of ℎ-zigzags

in 𝐺 is

∑
𝑒 (𝑢,𝑣) ∈𝐸 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣)].

Interestingly, we find that we can compute 𝑑𝑝 [𝑖] [𝑒 (𝑢, 𝑣)] using a dynamic programming al-

gorithm. The key idea of our DP algorithm is that for each zig-zag path 𝑍 of length 𝑖 starting

from 𝑒 (𝑢, 𝑣), it must consist of the zig-zag paths of length 𝑖 − 1 starting from 𝑣 . Thus, we have the

following recursive equation
𝑑𝑝 [𝑖] [𝑒 (𝑢, 𝑣)] = ∑

𝑢′∈𝑁 >𝑢 (𝑣) 𝑑𝑝 [𝑖 − 1] [𝑒 (𝑣,𝑢′)],
𝑑𝑝 [𝑖 − 1] [𝑒 (𝑣,𝑢′)] = ∑

𝑣′∈𝑁 >𝑣 (𝑢′ ) 𝑑𝑝 [𝑖 − 2] [𝑒 (𝑢′, 𝑣 ′)],
𝑑𝑝 [1] [𝑒 (𝑢, 𝑣)] = 1,

(1)

where 2 ≤ 𝑖 ≤ 2ℎ − 1.
Note that in Eq. (1), the notions 𝑑𝑝 [𝑖] [𝑒 (𝑢, 𝑣)] and 𝑑𝑝 [𝑖] [𝑒 (𝑣,𝑢)] are quite different. The notion

𝑑𝑝 [𝑖] [𝑒 (𝑢, 𝑣)] corresponds to the number of paths of length of 𝑖 where 𝑖 is odd number, which also

denotes the count of paths starting from a certain vertex in𝑈 and ending at a certain vertex in 𝑉 .

The notion 𝑑𝑝 [𝑖] [𝑒 (𝑣,𝑢)] corresponds to the number of paths of even length, where both starting

vertex and ending vertex are in 𝑈 . When initializing 𝑑𝑝 [1] [𝑒 (𝑢, 𝑣)] to 1 for all 𝑒 (𝑢, 𝑣) ∈ 𝐸, the
others 𝑑𝑝 [𝑖] [𝑒 (𝑢, 𝑣)] and 𝑑𝑝 [𝑖] [𝑒 (𝑣,𝑢)] for 𝑖 = 2 to 2ℎ − 1 can be recursively computed by Eq. (1).

The detailed implementation of this DP algorithm is outlined in Algorithm 4. It derives that the

total time cost of Algorithm 4 is𝑂 (ℎ𝑑max |𝐸 |), where 𝑑max is the maximum degree in𝐺 . Such a time

cost is too high for large graphs, as 𝑑max can be up to 𝑂 (𝑛). Below, we propose an optimization

technique to reduce the time complexity to 𝑂 (ℎ |𝐸 |).
Optimization technique for DPCount. Here we use a differential-interval updating technique to

speed up Algorithm 4. Specifically, denote by 𝑑𝑝 [𝑖] the set {𝑎1, 𝑎2, ..., 𝑎𝑛} where 𝑎 𝑗 = 𝑑𝑝 [𝑖] [𝑒 𝑗 ]. We

can replace 𝑑𝑝 [𝑖] with another set {𝑏1, 𝑏2, ..., 𝑏𝑛} such that 𝑏1 = 𝑎1 and 𝑏 𝑗 = 𝑎 𝑗 − 𝑎 𝑗−1 for 𝑗 = 2 to

𝑛. Then, we have 𝑎 𝑗 =
∑

𝑗 ′≤ 𝑗 𝑏 𝑗 ′ , i.e, each 𝑎𝑖 is the prefix sum of {𝑏1, 𝑏2, ..., 𝑏𝑛}. Note that lines 4-5
(lines 7-8) can be regarded as updating the values of {𝑎1, 𝑎2, ..., 𝑎𝑛} in an interval [𝑙, 𝑟 ] using the

same integer 𝑤 (𝑤 = 𝑑𝑝 [𝑖 − 1] [𝑒 (𝑢, 𝑣)] in line 5 and 𝑤 = 𝑑𝑝 [𝑖 − 1] [𝑒 (𝑣,𝑢′)] in line 8). If 𝑑𝑝 [𝑖] is
replaced with {𝑏1, 𝑏2, ..., 𝑏𝑛}, we only need to update 𝑏𝑙 and 𝑏𝑟+1 to 𝑏𝑙 +𝑤 and 𝑏𝑟+1 −𝑤 , respectively.
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Algorithm 4: DPCount(𝐺,ℎ)
1 Initialize 𝑑𝑝 [𝑖 ] [𝑒 (𝑢, 𝑣) ] = 0 and 𝑑𝑝 [1] [𝑒 (𝑢, 𝑣) ] = 1 for each 𝑒 (𝑢, 𝑣) ∈ 𝐸;
2 for 𝑖 = 2 to 2ℎ − 1 do
3 foreach 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
4 foreach 𝑒 (𝑣,𝑢′ ) with 𝑢′ > 𝑢 do
5 𝑑𝑝 [𝑖 ] [𝑒 (𝑣,𝑢′ ) ] ← 𝑑𝑝 [𝑖 ] [𝑒 (𝑣,𝑢′ ) ] + 𝑑𝑝 [𝑖 − 1] [𝑒 (𝑢, 𝑣) ];

6 foreach 𝑒 (𝑣,𝑢′ ) ∈ 𝐸 do
7 foreach 𝑒 (𝑢′, 𝑣′ ) with 𝑣′ > 𝑣 do
8 𝑑𝑝 [𝑖 + 1] [𝑒 (𝑢′, 𝑣′ ) ] ← 𝑑𝑝 [𝑖 + 1] [𝑒 (𝑢′, 𝑣′ ) ] + 𝑑𝑝 [𝑖 ] [𝑒 (𝑣,𝑢′ ) ];

9 𝑖 ← 𝑖 + 2;
10 return 𝑑𝑝 ;

Algorithm 5: Sampling ℎ-zigzags for all ℎ ≤ ℎmax.

Input: A bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸 ) , an array𝑇𝑠 and an integer ℎmax .

Output: For each ℎ ≤ ℎmax , uniformly sampling𝑇𝑠 [ℎ] ℎ-zigzags.
1 Sample(𝐺,𝑇𝑠,ℎmax,DPCount(𝐺,ℎmax ) ) ;
2 Procedure Sample(𝐺,𝑇𝑠,ℎmax, 𝑑𝑝 )
3 𝑧𝑖𝑔𝑧𝑎𝑔𝑠 [ ] ← {∅, ∅, ...};
4 for ℎ = 2 to ℎmax do
5 for 𝑖 = 1 to𝑇𝑠 [ℎ] do { 𝑍 ← DPSampling(ℎ,𝑑𝑝 ) ; 𝑧𝑖𝑔𝑧𝑎𝑔𝑠 [ℎ] ← 𝑧𝑖𝑔𝑧𝑎𝑔𝑠 [ℎ] ∪ {𝑍 }; }
6 return 𝑧𝑖𝑔𝑧𝑎𝑔𝑠 ;

7 Procedure DPSampling(ℎ,𝑑𝑝 )
8 Set the distribution 𝐷 over the edges where 𝑝 (𝑒 (𝑢, 𝑣) ) = 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣) ]/∑𝑒 (𝑢,𝑣) 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣) ];
9 Sample an edge 𝑒 (𝑢, 𝑣) according to 𝐷 ; 𝑍 ← {𝑒 (𝑢, 𝑣) };

10 for 𝑖 = 2ℎ − 2 to 𝑖 = 2; do
11 𝐸′ ← {𝑒 (𝑣,𝑢′ ) |𝑢′ ∈ 𝑁 >𝑢 (𝑣) };
12 Set the distribution 𝐷 over 𝐸′ where 𝑝 (𝑒 ) = 𝑑𝑝 [𝑖 ] [𝑒 ]/∑𝑒∈𝐸′ 𝑑𝑝 [𝑖 ] [𝑒 ];
13 Sample an edge 𝑒 (𝑣,𝑢′ ) according to 𝐷 ;

14 𝑍 ← 𝑍 ∪ {𝑒 (𝑣,𝑢′ ) }; 𝐸′ ← {𝑒 (𝑢′, 𝑣′ ) |𝑣′ ∈ 𝑁 >𝑣 (𝑢′ ) };
15 Set the distribution 𝐷 over 𝐸′ where 𝑝 (𝑒 ) = 𝑑𝑝 [𝑖 − 1] [𝑒 ]/∑𝑒∈𝐸′ 𝑑𝑝 [𝑖 − 1] [𝑒 ];
16 Sample an edge 𝑒 (𝑢′, 𝑣′ ) according to 𝐷 ;

17 𝑍 ← 𝑍 ∪ {𝑒 (𝑢′, 𝑣′ ) }; 𝑢 ← 𝑢′ ; 𝑣 ← 𝑣′ ; 𝑖 ← 𝑖 − 2;

18 return 𝑍 ;

After this updating, we also have 𝑎 𝑗 =
∑

𝑗 ′≤ 𝑗 𝑏 𝑗 ′ . Thus, the computation of lines 4-5 (lines 7-8) can

be achieved in 𝑂 (1) time using such a differential-interval updating trick. As a result, the total

time complexity of Algorithm 4 can be reduced to 𝑂 (ℎ |𝐸 |). The detailed implementation of this

optimization technique can be found in our full version [4].

From counting to uniformly sampling. We propose an efficient algorithm to uniformly sample

an ℎ-zigzag based on Algorithm 4. The key point to uniformly generate an ℎ-zigzag from 𝐺 is to

determine the probability distribution for all ℎ-zigzags in 𝐺 . Interestingly, we can use the counts

computed by Algorithm 4 to construct the probability distribution. Specifically, by Eq. (1), the total

number of ℎ-zigzags in 𝐺 is

∑
𝑒 (𝑢,𝑣) ∈𝐸 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣)], where 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣)] denotes the

number of ℎ-zigzags starting from the edge 𝑒 (𝑢, 𝑣). Based on this, the probability of an edge 𝑒 (𝑢, 𝑣)
appearing in the head of an ℎ-zigzag 𝑍 is

𝑑𝑝 [2ℎ−1] [𝑒 ]∑
𝑒 (𝑢,𝑣) ∈𝐸 𝑑𝑝 [2ℎ−1] [𝑒 ] . Moreover, for the next edge in 𝑍 , it

must be contained in {𝑒 (𝑣,𝑢′) |𝑢′ ∈ 𝑁 >𝑢 (𝑣)}. The probability of an edge 𝑒 (𝑣,𝑢′) appearing as the
second edge in 𝑍 , given that 𝑒 (𝑢, 𝑣) is the first edge of 𝑍 , is 𝑑𝑝 [2ℎ−2] [𝑒 (𝑣,𝑢′ ) ]

𝑑𝑝 [2ℎ−1] [𝑒 (𝑢,𝑣) ] . The same method can

be recursively applied to determine the probabilities of the other edges appearing in 𝑍 . Based on

these probabilities, we can uniformly sample an ℎ-zigzag from 𝐺 . The detailed implementation of

our sampling algorithm is given in Algorithm 5.
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In Algorithm 5, it admits two parameters ℎmax and 𝑇𝑠 , where ℎmax limits the maximum length

of ℎ-zigzags to be sampled and 𝑇𝑠 is the set of sample sizes of ℎ-zigzags for each ℎ ≤ ℎmax (i.e,

𝑇𝑠 [ℎ] denotes the sample size of the ℎ-zigzags). First, the algorithm makes use of DPCount to get

the DP table which is used to determine the sampling probabilities (line 1). For each length ℎ, the

algorithm draws 𝑇𝑠 [ℎ] samples by invoking the DPSampling procedure (line 5). In DPSampling, it
first sets a probability distribution over all edges in 𝐸 based on the 𝑑𝑝 table that can be the head

edge of ℎ-zigzags (line 8). Then, the algorithm samples a head edge for an ℎ-zigzag 𝑍 w.r.t. this

probability distribution (line 9). For each remaining edge in 𝑍 , it uses a similar method to sample

an edge by first setting the probability distribution of the edges using the 𝑑𝑝 table (lines 11-17).

The procedure returns 𝑍 as a sampled ℎ-zigzag if 2ℎ − 1 edges have been added to 𝑍 (line 18). The

following theorem shows that every ℎ-zigzag can be uniformly sampled by Algorithm 5.

Theorem 4.5. Algorithm 5 uniformly samples the set of ℎ-zigzags in 𝐺 for each ℎ ≤ ℎmax.

Proof sketch. The probability of each edge being sampled is 𝑝 (𝑒) in lines 8 and 12. The probability

of each ℎ-zigzag 𝑍 being sampled is

∏
𝑒∈𝑍 𝑝 (𝑒) = 1∑

𝑒∈𝐸 𝑑𝑝 [2ℎ−1] [𝑒 ] . □

The time and space complexity of Algorithm 5 is analyzed in the following theorem.

Theorem 4.6. The time and space complexity of Algorithm 5 is 𝑂 (ℎmax |𝐸 | + ℎmax𝑑max |T |) and
𝑂 (ℎmax |𝐸 | + |T |), where T is the set of all the sampled ℎ-zigzags for all ℎ ≤ ℎmax.

Proof sketch. The time cost of DPCount is bounded by 𝑂 (ℎmax |𝐸 |). Sample one sample takes

𝑂 (ℎmax𝑑max), and thus the total time costs of the algorithm is 𝑂 (ℎmax𝑑max |T |). □

4.2 Biclique counts estimation via zig-zag sampling
Armed with Theorem 4.4 and Algorithm 5, we are ready to devise an estimating algorithm to

approximately count the (𝑝, 𝑞)-bicliques for all 𝑝 and 𝑞.

The ZigZag algorithm. We develop a novel estimating algorithm which samples ℎ-zigzags on the

neighborhood subgraphs of 𝐺 , instead of the whole graph. Our algorithm is based on the fact that

any biclique that contains an edge 𝑒 (𝑢, 𝑣) must be contained in the subgraph 𝐺 ′ induced by the set

of neighbors of 𝑒 (𝑢, 𝑣) (including 𝑒 (𝑢, 𝑣) itself). Therefore, we only need to sample ℎ-zigzags on the

local neighborhood subgraph𝐺 ′, instead of on the entire bipartite graph𝐺 , to estimate the counts of

bicliques containing 𝑒 (𝑢, 𝑣).
Specifically, for each 𝑒 (𝑢, 𝑣), we first compute the subgraph 𝐺 ′ of 𝐺 induced by ®𝑁 (𝑒 (𝑢, 𝑣)).

Then, we sample (ℎ − 1)-zigzags on 𝐺 ′; and we can obtain an ℎ-zigzag of 𝐺 by adding 𝑒 (𝑢, 𝑣) to
each of (ℎ − 1)-zigzag. To get a uniform ℎ-zigzag sample, we also needs to take the count of the

(ℎ − 1)-zigzags in 𝐺 ′ into consideration. Specifically, by Eq. (1), for each 𝑒 (𝑢, 𝑣) ∈ 𝐸, the number

of ℎ-zigzags whose head edge is 𝑒 (𝑢, 𝑣) is 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣)], which indicates that the number of

(ℎ − 1)-zigzags in 𝐺 ′ (induced by ®𝑁 (𝑒 (𝑢, 𝑣))) is exactly 𝑑𝑝 [2ℎ − 1] [𝑒 (𝑢, 𝑣)]. Denote by 𝑇 the total

number of ℎ-zigzags of 𝐺 to be sampled. Then, for each 𝐺 ′ induced by ®𝑁 (𝑒), it needs to sample

𝑇 × 𝑑𝑝 [2ℎ−1] [𝑒 ]∑
𝑒′ ∈𝐸 𝑑𝑝 [2ℎ−1] [𝑒′ ] (ℎ−1)-zigzags in𝐺

′
to guarantee uniform ℎ-zigzag samples. Clearly, the space

usage of the algorithm is dominated by the maximum size of subgraphs induced by all ®𝑁 (𝑒), which
is often much smaller than the size of𝐺 . Moreover, each sampled ℎ-zigzag must be contained in the

local neighborhood subgraph which increases the probability that a sampled ℎ-zigzag hits a biclique

(i.e., the subgraph induced by the sampled ℎ-zigzag is a biclique), thus improving the sampling

performance. The detailed implementation is outlined in Algorithm 6.

Algorithm 6 uses a set of arrays 𝑎𝑛𝑠 to store the estimated counts of all (𝑝, 𝑞)-bicliques, i.e.,
𝑎𝑛𝑠 [𝑖] [ 𝑗] is the estimated count of (𝑖, 𝑗)-bicliques (line 1). The algorithm then computes the counts
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Algorithm 6: ZigZag: Estimating all bicliques in each edges’ neighborhood subgraph

Input: A bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸 ) , sample size𝑇 and an integer ℎmax

Output: The approximate count of (𝑝,𝑞)-bicliques for all 𝑝,𝑞 ≤ ℎmax

1 Initialize 𝑎𝑛𝑠 as an ℎmax × ℎmax zeros array;

2 𝐺 ′ ← the subgraph induced by 𝑁 >𝑢 (𝑣) and 𝑁 >𝑣 (𝑢 ) for each 𝑒 (𝑢, 𝑣) ;
3 foreach 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
4 𝑑𝑝 ← 𝐷𝑃𝐶𝑜𝑢𝑛𝑡 (𝐺 ′, ℎmax − 1) ;
5 for ℎ = 1 to ℎmax − 1 do ℎ𝑧𝑧𝐶𝑛𝑡 [ℎ] ← ℎ𝑧𝑧𝐶𝑛𝑡 [ℎ] +∑

𝑒∈ ®𝑁 (𝑒 (𝑢,𝑣) ) 𝑑𝑝 [2ℎ − 1] [𝑒 ];

6 foreach 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
7 𝑑𝑝 ← DPCount(𝐺 ′, ℎmax − 1) ;
8 for ℎ = 1 to ℎmax − 1 do
9 𝐻𝑠 [ℎ] ← ∑

𝑒∈ ®𝑁 (𝑒 (𝑢,𝑣) ) 𝑑𝑝 [2ℎ − 1] [𝑒 ];
10 𝑇𝑠 [ℎ] ← 𝑇 × 𝐻𝑠 [ℎ]/ℎ𝑧𝑧𝐶𝑛𝑡 [ℎ];
11 𝑧𝑖𝑔𝑧𝑎𝑔𝑠 ← Sample(𝐺 ′,𝑇𝑠,ℎmax − 1, 𝑑𝑝 ) ;
12 𝑐𝑝−1,𝑞−1 (𝑍 ) ←

( |𝑁 (𝐿) |
𝑞−𝑝

)
for each 𝑍 = (𝐿, 𝑅) ∈ 𝑧𝑖𝑔𝑧𝑎𝑔𝑠 [𝑝 − 1] is a biclique;

13 𝑐𝑝−1,𝑞−1 (𝑍 ) ← 0 if 𝑍 ∈ 𝑧𝑖𝑔𝑧𝑎𝑔𝑠 [𝑝 − 1] does not induce a biclique;

14 𝑎𝑛𝑠𝑝,𝑞 ← 𝑎𝑛𝑠𝑝,𝑞 +
𝐻𝑠 [𝑝−1]∑𝑍 ∈𝑧𝑖𝑔𝑧𝑎𝑔𝑠 [𝑝−1] 𝑐𝑝−1,𝑞−1 (𝑍 )

𝑇𝑠 [𝑝−1] (𝑞−1𝑝−1)
15 return 𝑎𝑛𝑠 ;

of the (ℎ − 1)-zigzags in the subgraphs induced by each ®𝑁 (𝑒), where 𝑒 ∈ 𝐸 (lines 2-5). The total

counts for the 𝑖-zigzags is stored in ℎ𝑧𝑧𝐶𝑛𝑡 [𝑖] for each 1 ≤ 𝑖 ≤ ℎmax − 1 (line 5). Subsequently, the
algorithm determines the sample size for each ℎ (lines 7-10) and invokes Sample to sample desired

ℎ-zigzags (line 11). For each ℎ-zigzag sample 𝑍 , the algorithm computes 𝑐𝑝,𝑞 (𝑍 ) in Theorem 4.4 by

the following method. First, if 𝑍 induces a (𝑝, 𝑝)-biclique (we assume without loss of generality

that ℎ = 𝑝 ≤ 𝑞), denoted by (𝐿, 𝑅), then 𝑐𝑝,𝑞 (𝑍 ) =
( |𝑁 (𝐿) |
𝑞−𝑝

)
(line 12).Otherwise, we have 𝑐𝑝,𝑞 (𝑍 ) = 0

(line 13, in this case anℎ-zigzag does not hit a biclique). After that, the algorithm estimates the counts

of (𝑝, 𝑞)-bicliques for all 𝑝, 𝑞 ≤ ℎmax based on the unbiased estimator established in Theorem 4.4

(line 14). The algorithm terminates until all local neighborhood subgraphs are processed.
Denote by |𝐸𝑠𝑢𝑚 | =

∑
𝑒∈𝐸 | ®𝑁 (𝑒) | the total size of all subgraphs induced by ®𝑁 (𝑒) for each 𝑒 ∈ 𝐸.

Let |𝐸′ | be the maximum size among all these subgraphs. Then, the time and space complexity of

Algorithm 6 is analyzed as follows.

Theorem 4.7. The time and space complexity of Algorithm 6 is𝑂 ( |𝐸𝑠𝑢𝑚 |ℎmax+|𝐸 |ℎ2𝑚𝑎𝑥+𝑇𝑑maxℎ
2

max
)

and 𝑂 (ℎmax |𝐸′ | + |𝐸 |) respectively, where 𝑇 is the total sample size for all ℎ ≤ ℎmax, and 𝑑max is the
maximum degree of 𝐺 .

Proof sketch. By theorem 4.6, we can obtain the time and space complexity of the algorithm

when handling each subgraph ®𝑁 (𝑒). By summing over all these subgraphs, the total time and space

complexity can be obtained. □

The ZigZag++ algorithm. The main limitation of Algorithm 6 is that it needs to process 𝑂 ( |𝐸 |)
neighborhood subgraphs which is often costly. To further boost the efficiency, we propose a different

algorithm, called ZigZag++, that is based on sampling ℎ-zigzags on the neighborhood subgraphs

constructed by the 2-hop subgraph of vertices.

Definition 4.8 (2-hop subgraph). Given a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸), we refer to 𝐺𝑢 (𝑈𝑢,𝑉𝑢, 𝐸𝑢)
as the 2-hop subgraph of a vertex 𝑢 ∈ 𝑈 if 𝑉𝑢 = 𝑁 (𝑢),𝑈𝑢 = ∪𝑣∈𝑁 (𝑢 )𝑁 >𝑢 (𝑣) and 𝐸𝑢 = {𝑒 (𝑢′, 𝑣 ′) ∈
𝐸 |𝑢′ ∈ 𝑈𝑢, 𝑣

′ ∈ 𝑉𝑢}.
By Definition 4.8, we only need to sample ℎ-zigzags on the 2-hop subgraphs to estimate the

biclique counts for all 𝑝 and 𝑞. The general steps of ZigZag++ are the same as those of Algorithm 6,

except the graph construction part. Specifically, ZigZag++ first constructs the 2-hop subgraph for
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each vertex 𝑢 ∈ 𝑈 . Then, for each 2-hop subgraph, ZigZag++ computes the counts of ℎ-zigzags

contained in it using DPCount. Likewise, based on Theorem 4.4, ZigZag++ constructs an unbiased

estimator using the uniform ℎ-zigzag samples. The detailed implementation of ZigZag++ can be

found in the full version [4] due to the space limit.

Let |𝑁𝑠𝑢𝑚 | =
∑

𝑢∈𝑈 |𝐸𝑢 |, where 𝐸𝑢 is the set of edges in the 2-hop graph of 𝑢. Denote by |𝐸max | =
max𝑢∈𝑈 |𝐸𝑢 | is the maximum size among all 2-hop graphs. Then, similar to Theoreem 4.7, the time

and space complexity of ZigZag++ is𝑂 ( |𝑁𝑠𝑢𝑚 |ℎmax + |𝑉 |ℎ2𝑚𝑎𝑥 +𝑇𝑑maxℎ
2

max
) and𝑂 (ℎmax |𝐸max | + |𝐸 |)

respectively.

Comparison between ZigZag and ZigZag++. Note that ZigZag++ only needs to process 𝑂 ( |𝑈 |)
local neighborhood subgraphs, while ZigZag has to handle 𝑂 ( |𝐸 |) subgraphs. Intuitively, ZigZag++
should be more efficient in terms of running time, as |𝑈 | < |𝐸 |.

4.3 Estimation accuracy analysis
Based on the classic Hoeffding’s inequality, we can derive the estimation accuracy of our algorithms

as shown in the following theorem.

Theorem 4.9. Denote by 𝜌 =
| B | (𝑞ℎ)
|H | where 𝑝 < 𝑞 andℎ = 𝑝 ,B andH are the sets of (𝑝, 𝑞)-bicliques

and ℎ-zigzags of 𝐺 respectively. Let 𝑍 = max1≤𝑖≤𝑇 {𝑐𝑝,𝑞 (𝑍𝑖 )}, where 𝑍𝑖 is a sampled ℎ-zigzag in 𝐺 .
Then, with probability 1 − 𝜖 , both ZigZag and ZigZag++ obtain a 1 − 2𝛿 approximation for the count
of (𝑝, 𝑞)-bicliques if 𝑇 ≥ 𝑍 2

2𝜌2𝛿2
ln

1

𝜖
, where 𝜖 and 𝛿 are small positive values and 𝑇 is the sample size.

Proof sketch. Since 𝐸 [𝜌] = 𝜌 (by Theorem 4.4 and 4.5), we have 𝐸 [𝜌𝑇 ] = 𝜌𝑇 , where 𝜌𝑇 equals

the total counts of bicliques being sampled. Then, the theorem follows by Hoeffding’s inequality. □
In Theorem 4.9, we can observe that the sample size 𝑇 is mainly determined by ( 𝑍

𝜌
)2, i.e., the

larger ( 𝑍
𝜌
)2 is, the more samples 𝑇 are required to ensure a high accuracy of our algorithms, where

𝑍 is a maximum value of 𝑐𝑝,𝑞 (𝑍𝑖 ) for each 𝑍𝑖 ∈ T . As shown in our experiments, ( 𝑍
𝜌
)2 is often small

in most real-world bipartite graphs when ℎmax is not very large. Thus, the proposed algorithms

generally do not require a large sample size 𝑇 to achieve a good accuracy in real-world bipartite

graphs as confirmed in our experiments.

Accuracy comparison between ZigZag and ZigZag++. In ZigZag, each sampled ℎ-zigzag with

the head edge 𝑒 (𝑢, 𝑣) must be contained in ®𝑁 (𝑒 (𝑢, 𝑣)) ∪ {𝑒 (𝑢, 𝑣)}. However, in ZigZag++, the
sampled ℎ-zigzags with a head edge 𝑒 (𝑢, 𝑣) are contained in the 2-hop graph. Intuitively, the edges

in 𝐺 ′ is closely connected to 𝑒 (𝑢, 𝑣), while edges in 𝐺𝑢 are not necessary connected to 𝑒 (𝑢, 𝑣). As a
result, an ℎ-zigzag sampled from 𝐺 ′ is more likely contained in a biclique. Therefore, ZigZag can
achieve a better estimation accuracy than ZigZag++, as confirmed in our experiments. A more

comprehensive analysis is shown in the full version of this paper [4].

Discussions. For the small subgraph counting problem, existing sampling-based algorithms can be

classified into two categories: (1) exponential-time algorithms [2, 5, 6, 12, 14], and (2) polynomial-

time algorithms [23, 33, 36]. The exponential-time algorithms either need to invoke an exponential-

time procedure for sampling [5, 6, 12, 14], or need to use an exponential-time exact algorithm on

the samples to compute the final results [2]. The polynomial-time algorithms are often with a

theoretical guarantee based on the pattern-hitting ratio 𝜌 [23, 33, 36], i.e., the ratio between the

number of subgraphs (the subgraphs need to count) and the total number of sampled patterns.
For example, for 𝑘-clique counting, [36] proposed a 𝑘-color set sampling algorithm, where the

sampling performance of this algorithm depends on the ratio between the number of 𝑘-cliques and

the number of 𝑘-color sets. Clearly, our ℎ-zigzag sampling algorithms also belong to the second
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category, and the theoretical guarantees of our algorithms (Theorem 4.9) are very similar to that

of [36]. To our knowledge, for the subgraph counting problem, no polynomial-time sampling

algorithm with a theoretical guarantee independent of 𝜌 is known.

5 A HYBRID COUNTING ALGORITHM
Intuitively, the proposed sampling-based approximation algorithms often work well when the

bipartite graph is dense. This is because in a denser bipartite graph an ℎ-zigzag is more likely to be

contained in a biclique. However, for very sparse bipartite graphs, our exact EPivoter algorithm
performs well as the number of enumerated bicliques is often not very large. These intuitions

motivate us to develop a hybrid algorithm by integrating both exact and approximation algorithms.

The key idea of our hybrid algorithm is that we use the exact algorithm to compute the biclique

counts only in the sparse regions of the bipartite graph, while apply the sampling-based algorithm

to estimate the biclique counts in the dense regions of the bipartite graph. The remaining question

is how can we partition a bipartite graph into sparse regions and dense regions?

Aheuristic bipartite graphpartition strategy.Before introducing our heuristic partition strategy,
we first give a definition as follows.

Definition 5.1. For each edge 𝑒 (𝑢, 𝑣) in𝐺 , we define the weight of 𝑒 (𝑢, 𝑣) as𝑤 (𝑒 (𝑢, 𝑣)) = | ®𝑁 >𝑢 (𝑣) |
× | ®𝑁 >𝑣 (𝑢) |. For each vertex 𝑢 ∈ 𝑈 , we define the weight of 𝑢 as𝑤 (𝑢) = ∑

𝑣∈𝑁 (𝑢 ) 𝑤 (𝑒 (𝑢, 𝑣)).
Based on Definition 5.1, we present a heuristic approach to split the original bipartite graph into

a sparse region and a dense region. Given a threshold 𝜏 , if𝑤 (𝑢) > 𝜏 , 𝑢 will be added into the dense

region, otherwise it is pushed into the sparse region. We can devise a peeling algorithm to compute

the weight𝑤 (𝑢) for each vertex 𝑢. The detailed implementation is shown in Algorithm 7. Suppose

the input bipartite graph is a degree ordered bipartite graph. The algorithm first initializes an array

𝑑𝑒𝑔 to maintain the degrees of vertices in 𝐺 . Then, for each vertex 𝑢 ∈ 𝑈 , it computes the𝑤 (𝑢) by
Definition 5.1 (lines 4-6). If𝑤 (𝑢) ≤ 𝜏 , the vertex 𝑢 is pushed into the sparse region, otherwise it is

added into dense region (line 7). Note that 𝑑𝑒𝑔 always maintains the degree of each vertex in the

remaining graph of 𝐺 . Thus, for each 𝑒 (𝑢, 𝑣), 𝑑𝑒𝑔(𝑢) × 𝑑𝑒𝑔(𝑣) is exactly equal to 𝑤 (𝑒 (𝑢, 𝑣)). It is
easy to show that both the time and space complexity of Algorithm 7 are 𝑂 ( |𝐸 |).
The hybrid algorithm for counting bicliques. After obtaining the sparse region 𝑆 and the dense
region 𝐷 of𝐺 , the hybrid algorithm invokes the exact EPivoter algorithm to compute the subgraph

induced by {𝑒 (𝑢, 𝑣) |𝑢 ∈ 𝑆} and invokes the ZigZag or ZigZag++ algorithm to estimate the counts

of all bicliques in the subgraph induced by {𝑒 (𝑢, 𝑣) |𝑢 ∈ 𝐷}. Based on the degree ordering, we can

ensure that each biclique is counted once by the hybrid algorithm. For implementation details, we

only need to modify the line 2 in Algorithm 3 by adding a constraint 𝑢 ∈ 𝑆 in the “for” loop, and

modify the line 3 and line 6 in Algorithm 6 by adding a constraint 𝑢 ∈ 𝐷 in the “for” loop (similar

process for the ZigZag++ algorithm).

Remark. Note that when we only need to count (𝑝, 𝑞)-bicliques for a given pair (𝑝, 𝑞), we can also

use the state-of-the-art (𝑝, 𝑞)-biclique algorithm [34] to count the (𝑝, 𝑞)-bicliques in the subgraph

induced by the edges {𝑒 (𝑢, 𝑣) |𝑢 ∈ 𝑆} (i.e., the spare region) if both 𝑝 and 𝑞 are not very large,

because it is often very fast for small 𝑝 and 𝑞 given that the bipartite graph is very sparse.

6 APPLICATIONS OF BICLIQUE COUNTING
In this section, we show two applications of our (𝑝, 𝑞)-biclique counting techniques.

Higher-order clustering coefficient. The higher-order clustering coefficient based on the 𝑘-

clique counts [37, 38] is an important measurement that provides a comprehensive view of complex
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Algorithm 7: Heuristic partition of the bipartite graph

Input: Degree ordered bipartite𝐺 = (𝑈 ,𝑉 , 𝐸 ) and a threshold 𝜏

Output: The dense and sparse regions of𝐺

1 Initialize an array 𝑑𝑒𝑔 with 𝑑𝑒𝑔 (𝑣) = 𝑑 (𝑣) for each 𝑣 ∈ 𝑈 ∪𝑉 ;

2 foreach 𝑢 ∈ 𝑈 do
3 𝑤 (𝑢 ) ← 0;

4 foreach 𝑣 ∈ 𝑁 (𝑢 ) do
5 𝑑𝑒𝑔 (𝑣) ← 𝑑𝑒𝑔 (𝑣) − 1; 𝑑𝑒𝑔 (𝑢 ) ← 𝑑𝑒𝑔 (𝑢 ) − 1 ;

6 𝑤 (𝑢 ) ← 𝑤 (𝑢 ) + 𝑑𝑒𝑔 (𝑣) × 𝑑𝑒𝑔 (𝑢 ) ;
7 if 𝑤 (𝑢 ) > 𝜏 then 𝐷 ← 𝐷 ∪ {𝑢} else 𝑆 ← 𝑆 ∪ {𝑢};
8 return 𝐷,𝑆 ;

networks. As shown in [37], networks from the same domain typically have similar higher-order

clustering coefficient characteristics. According to the definition in [37], we can easily extend

such a higher-order clustering coefficient to bipartite graphs based on the (𝑝, 𝑞)-biclique counts.
Specifically, the higher-order clustering coefficient of a bipartite graph ℎ𝑐𝑐𝑝,𝑞 can be defined as

ℎ𝑐𝑐𝑝,𝑞 ≜ 2𝑝𝑞
𝐶𝑝,𝑞

𝑊𝑝,𝑞
, where 𝐶𝑝,𝑞 is (𝑝, 𝑞)-biclique counts and𝑊𝑝,𝑞 is the count of (𝑝, 𝑞)-wedges. Here

a (𝑝, 𝑞)-wedge is a connected non-induced subgraph which contains a (𝑝 − 1, 𝑞)-biclique as the
core and one extra node on the left side or a (𝑝, 𝑞 − 1)-biclique as the core and one extra node on

the right side. The extra node connects at least one node on the other side. The (𝑝, 𝑞)-biclique is
a special kind of (𝑝, 𝑞)-wedge, namely closed (𝑝, 𝑞)-wedge. The value of ℎ𝑐𝑐𝑝,𝑞 ranges from 0 to 1,

which indicates the probability of a (𝑝, 𝑞)-wedge being closed.

Note that we can compute ℎ𝑐𝑐𝑝,𝑞 by our biclique counting algorithms. This is because the value

of𝑊𝑝,𝑞 depends on 𝐶𝑝−1,𝑞 and 𝐶𝑝,𝑞−1. Let 𝑣 be a vertex on the left side. Denote the count of (𝑝, 𝑞)-
wedges containing 𝑣 by𝑊𝑣 (𝑝, 𝑞) and the count of (𝑝, 𝑞)-bicliques containing 𝑣 by 𝐶𝑣 (𝑝, 𝑞). We can

derive that𝑊𝑣 (𝑝, 𝑞) = 𝐶𝑣 (𝑝, 𝑞 − 1) ( |𝑁𝑣 | − 𝑞 + 1). More specifically, we can slightly modify the

Count procedure in Algorithm 3 to count𝑊𝑣 (𝑝, 𝑞). If 𝑣 is a vertex in 𝑃𝑙 of the Count procedure,
𝑊𝑣 (𝑝, 𝑞) is

( |𝑃𝑙 |−1
𝑝−|𝐻𝑙 |−1

) ( |𝑃𝑟 |
𝑞−1−|𝐻𝑟 |

)
( |𝑁𝑣 | − 𝑞 − 1). Similar formulations can be derived if 𝑣 is in 𝐻𝑙 , 𝑃𝑟

or 𝐻𝑟 of the Count procedure. Finally, we can obtain𝑊𝑝,𝑞 =
∑

𝑣∈𝑈∪𝑉𝑊𝑣 (𝑝, 𝑞) which is the total

counts of (𝑝, 𝑞)-wedges.
Higher-order densest subgraph mining. Finding higher-order densest subgraph based on 𝑘-

cliques on traditional graphs [11, 26, 28] and based on (𝑝, 𝑞)-bicliques on bipartite graphs [21] is

an important operator for many graph analysis applications. In bipartite graphs, the (𝑝, 𝑞)-biclique
densest subgraph problem aims to identify a subgraph 𝑆 with the maximum (𝑝, 𝑞)-biclique density
(denoted by𝛾 (𝑆)), which is defined as the ratio between the count of (𝑝, 𝑞)-bicliques and the number

of vertices in the subgraph. The exact algorithm to find the (𝑝, 𝑞)-biclique densest subgraph is

based on a parametric max-flow procedure which is often intractable for large bipartite graphs [21].

To overcome this issue, we can devise a peeling algorithm based on our (𝑝, 𝑞)-biclique counting
techniques, by extending the existing peeling algorithm for the 𝑘-clique densest subgraph problem

[11, 28]. Specifically, our peeling algorithm iteratively removes the vertex that has the minimum

(𝑝, 𝑞)-biclique counts and record the (𝑝, 𝑞)-biclique density of the subgraph generated in each

iteration. The algorithm outputs the subgraph with the maximum (𝑝, 𝑞)-biclique density during

the peeling procedure.

Note that we can slightly modify the Count procedure in Algorithm 3 to compute the (𝑝, 𝑞)-
biclique count for each vertex (also called local count). Specifically, if 𝑣 is a vertex in 𝑃𝑙 , then the count

of (𝑝, 𝑞)-bicliques containing node 𝑣 is
( |𝑃𝑙 |−1
𝑝−|𝐻𝑙 |−1

) ( |𝑃𝑟 |
𝑞−|𝐻𝑟 |

)
. If 𝑣 is in 𝐻𝑙 , the count is

( |𝑃𝑙 |
𝑝−|𝐻𝑙 |

) ( |𝑃𝑟 |
𝑞−|𝐻𝑟 |

)
.

Similar formulations can also be derived if 𝑣 is in 𝑃𝑟 or 𝐻𝑟 . The following theorem shows that
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Table 1. Datasets

Datasets |𝑼 | |𝑽 | |𝑬 | 𝒅𝑼 𝒅𝑽

Github 56,519 120,867 440,237 7.8 3.6

StackOF 545,195 96,678 1,301,942 2.4 13.5

Twitter 175,214 530,418 1,890,661 10.8 3.6

IMDB 685,568 186,414 2,715,604 4.0 14.6

Actor2 303,617 896,302 3,782,463 12.5 4.2

Amazon 2,146,057 1,230,915 5,743,258 2.7 4.7

DBLP 1,953,085 5,624,219 12,282,059 6.3 2.2

Table 2. Comparison of the sampling algorithms on DBLP
(Time (seconds), Error (%))

Algorithms (2, 5) (5, 5) all 𝑝 = 𝑞 < 10 all (< 10,< 10)
Time Error Time Error Time Error Time Error

Zz 15.02 0.01 21.81 0.02 15.28 0.06 17.93 0.14

Zz++ 7.14 0.03 26.13 1.76 8.65 0.07 9.80 0.49

EP/Zz 12.40 0.00 8.01 0.00 13.54 0.06 15.66 0.15

EP/Zz++ 8.79 0.02 8.80 0.22 10.58 0.06 12.17 0.17

PSA INF - 9.79 15.01 50.73 12.52 INF -
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Fig. 4. Runtime of different biclique counting algorithms for all 𝑝, 𝑞 ≤ ℎmax (ℎmax = 10,𝑇 = 10
5).

our peeling algorithm can achieve a
1

𝑝+𝑞 -approximation for the (𝑝, 𝑞)-biclique densest subgraph
problem.

Theorem 6.1. Denote the (𝑝, 𝑞)-biclique densest subgraph by 𝑆∗. The peeling algorithm returns a
1

𝑝+𝑞 -approximate answer 𝑆 , i.e. 𝛾 (𝑆) ≥ 𝛾 (𝑆∗ )
𝑝+𝑞 .

Proof sketch. Since 𝑆∗ is the (𝑝, 𝑞)-biclique densest subgraph, we have 𝛾 (𝑆∗) ≥ 𝛾 (𝑆∗ \ {𝑣}).
Denote by 𝑐 (𝑆∗) the total counts of 𝑆∗ and 𝑐𝑣 (𝑆∗) is the local count of 𝑣 in 𝑆∗. Then, we have

𝑐 (𝑆
∗ )

|𝑆∗ | ≥
𝑐 (𝑆∗ )−𝑐𝑣 (𝑆∗ )
|𝑆∗ |−1 . Further, we can derive that 𝑐𝑣 (𝑆∗) ≥ 𝑐 (𝑆∗ )

|𝑆∗ | = 𝛾 (𝑆∗). Let 𝑣 be the vertex

satisfying 𝑣 ∈ 𝑆∗ and ∀𝑢 ∈ 𝑆∗, 𝑢 ∈ 𝑆𝑣 . Then, we have 𝑆∗ ⊂ 𝑆𝑣 and 𝑐𝑣 (𝑆𝑣) ≥ 𝑐𝑣 (𝑆∗). After that, we
have

𝛾 (𝑆𝑣 ) =
𝑐 (𝑆𝑣 )
|𝑆𝑣 |

=

∑
𝑢∈𝑆𝑣 𝑐𝑢 (𝑆𝑣 )
(𝑝 + 𝑞) |𝑆𝑣 |

≥
∑

𝑢∈𝑆𝑣 𝑐𝑢 (𝑆∗ )
(𝑝 + 𝑞) |𝑆𝑣 |

≥
∑

𝑢∈𝑆𝑣 𝛾 (𝑆∗ )
(𝑝 + 𝑞) |𝑆𝑣 |

=
𝛾 (𝑆∗ )
𝑝 + 𝑞 . (2)

7 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the proposed algorithms. For exact

biclique counting, we implement the EP algorithmwhich is our edge-pivot based algorithm proposed

in Algorithm 3. We use the state-of-the-art algorithm [34], denoted by BC, as the baseline algorithm.

Since BC can only count the (𝑝, 𝑞)-bicliques for a specific pair of (𝑝, 𝑞), we run BC multiple times

by varying 𝑝 and 𝑞 to get the counts of (𝑝, 𝑞)-bicliques for all pairs of (𝑝, 𝑞). In the experiments,

we will also compare our algorithms with BC to count (𝑝, 𝑞)-cliques with only one pair of (𝑝, 𝑞),
although we focus mainly on counting all (𝑝, 𝑞)-bicliques for all pairs of (𝑝, 𝑞).
For approximate biclique counting, we implement five different algorithms: Zz, Zz++, EP/Zz,

EP/Zz++ and PSA [2]. Zz and Zz++ are the proposed ZigZag and ZigZag++ algorithms developed

in Section 4. EP/Zz and EP/Zz++ are hybrid algorithms integrating EP. All these approximate

algorithms have two parameters: the maximum ℎ-zigzag size ℎmax and the sample size 𝑇 . In

our experiments, we set ℎmax = 10 and 𝑇 = 10
5
as default values. PSA is a general subgraph

counting algorithm, which first samples a set of edges using a priority sampling technique and

then enumerates the (𝑝, 𝑞)-bicliques in the graph induced by the set of sampled edges using the

state-of-the-art BC algorithm [34]. We use the count of (2, 2)-biclique as the weight of edge for
priority sampling as suggested in [2] and set the sample size as𝑇 ×ℎ𝑚𝑎𝑥 for a fair comparison. Unless

otherwise specified, when varying one parameter, the other parameters are set to their default
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Fig. 7. The heat-map of estimation errors of various algorithms with varying 𝑝 and 𝑞 (%).

value. We will also study how these parameters affect the performance of different algorithms. For

all approximate algorithms, the results in the experiments are the average results over 20 runs. All

algorithms are implemented in C++. We evaluate all algorithms on a server with an AMD 3990X

CPU and 256GB memory running Linux CentOS 7 operating system.

We use 7 large real-world bipartite graphs in our experiments. The detailed statistics of our

datasets are summarized in Table 1.All datasets are downloaded from http://konect.cc/.

7.1 Performance results

Runtime of different algorithms.We first compare two exact algorithms EP and BC to count all

bicliques for all pairs of (𝑝, 𝑞). We use the symbol “INF” to represent that the algorithm cannot

terminate within 24 hours. The results on all datasets are shown in Fig. 5. As can be seen, EP can

be up to more than two orders of magnitude faster than BC on all datasets. For example, on Actor2,
BC takes 12,476 seconds, while EP only consumes 49 seconds to count all bicliques.

Second, we compare the runtime of all algorithms given that ℎmax = min{𝑝, 𝑞} ≤ 10. We set

ℎmax = 10 based on the following reasons. First, small biclique counts may be more useful for

real-world applications [34]. Second, the baseline algorithm BC is often intractable when ℎmax is

large. Third, our sampling-based algorithms may be not very accurate for a very large ℎmax. As a

result, it is more useful to compare the performance of different algorithms when ℎmax is not very

large. Fig. 4 shows the results on all datasets. As can be seen, all our algorithms are substantially

faster than the state-of-the-art algorithm BC to count the (𝑝, 𝑞)-bicliques for all 𝑝, 𝑞 ≤ ℎmax on

all datasets. When comparing Zz and Zz++, we find that on large graphs Zz++ is faster than Zz,
while on small graphs Zz is more efficient. In general, our four sampling-based algorithms are

significantly faster than our exact algorithm. For example, on Actor2, EP takes 45 seconds, while

Zz, Zz++, EPivoter/ZigZag, and EPivoter/ZigZag++ consumes 18 seconds, 15 seconds, 20 seconds,

and 18 seconds respectively. These results suggest that our sampling-based algorithms are very

efficient to estimate the (𝑝, 𝑞)-bicliques for all 𝑝, 𝑞 ≤ ℎmax given that ℎmax is not very large.

Comparison of our sampling algorithms with PSA. Here we compare the performance of

our sampling algorithms with the priority sampling based algorithm PSA. The results on DBLP is

shown in Table 2. Similar results can also be observed on the other datasets. As can be seen, our
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sampling algorithms significantly outperform PSA in terms of both running time and estimation

accuracy. When 𝑝 = 𝑞, PSA achieves 15.01% error to count the (5, 5)-biclique and 12.52% average

error for all 𝑝 = 𝑞 < 10, using 9.79 seconds and 50.73 seconds respectively. Our best algorithm,

however, achieves near 0% error to count (5, 5)-biclique and 0.06% average error for all 𝑝 = 𝑞 < 10,

using 8.01 seconds and 10.58 seconds respectively. When counting (2, 5)-biclique, PSA cannot

terminate within 1 day. This is because there are 3×1011 (2, 5)-bicliques in the sampled graph and it

is very costly to enumerate all of them using BC. Generally, the count of imbalanced biclique is very

large (as shown in Fig. 1) even in the subgraph induced by the set of sampled edges. For the same

reason, PSA cannot count (𝑝, 𝑞)-bicliques for all 𝑝 < 10, 𝑞 < 10. The results further demonstrates

the efficiency and superiority of our algorithms.

The effect of the parameter ℎmax. Fig. 6 shows the runtime of four sampling-based algorithms

with varying ℎmax on Amazon and DBLP, where the sample size 𝑇 is set to 10
5
. The results on the

other datasets are consistent. As expected, the runtime of all sampling-based algorithms slightly

increases with ℎmax increases. This is because the time complexity of sampling-based algorithms is

insensitive w.r.t. the parameter ℎmax if ℎmax is small. Moreover, we can see that Zz++ is much faster

than Zz with all parameters, which confirms our analysis in Section 4.2.

We define the estimation error as

|𝐶𝑝,𝑞− ˆ𝐶𝑝,𝑞 |
𝐶𝑝,𝑞

. Fig. 7 plots the heat-maps of the estimation errors of

different algorithms with varying 𝑝 and 𝑞 on DBLP. From Fig. 7, we can see that all our sampling-

based algorithms are very accurate if 𝑝 and 𝑞 are small (i.e., 𝑝 ≤ 8 and 𝑞 ≤ 8). Moreover, Zz is
generally more accurate than Zz++ under most parameter settings, which is consistent with our

analysis in Section 4.3. In general, with the increase of 𝑝 or 𝑞, the estimation errors of all sampling-

based algorithms also increase. This is because with ℎmax = min{𝑝, 𝑞} increases, the probability of

an ℎ-zigzag containing in a biclique will decrease, thus reducing the sampling performance.

The effect of the parameter 𝑇 . Here we study the performance of our approximate algorithms

with a varying sample size 𝑇 . Fig. 8(b) shows the runtime of four approximate algorithms with

varying 𝑇 on Amazon and DBLP. The results on the other datasets are consistent. As expected, the

runtime of all algorithms increases as 𝑇 increases. Also, we can observe that Zz++ is significantly

faster than the other algorithms, which is consistent with our previous results.

Fig. 9 shows the average errors of our approximate algorithms with varying 𝑇 on Amazon and

DBLP (ℎmax = 10). As shown in Fig. 9, the estimation errors of all algorithms decrease as𝑇 increases.

In general, Zz has a lower error than Zz++, which further confirms our analysis in Section 4.3.

Additionally, we can clearly see that EP/Zz (EP/Zz++) achieves a lower error than Zz (Zz++). This
result further indicates that our hybrid framework can improve the estimation accuracy of the

sampling-based algorithms.

Runtime of counting (𝑝, 𝑞)-bicliques for fixed 𝑝 and 𝑞. Table 3 reports the runtime of various

algorithms for specific 𝑝 and 𝑞 on Github. The general results on other datasets are consistent. As
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Table 3. Runtime of different (𝑝, 𝑞)-biclique counting
algorithm for only a pair of (𝑝, 𝑞) on Github (𝑝 <

10, 𝑞 < 10, 𝑇 = 10
5)

(𝑝,𝑞) BC EP Zz Zz++ EP/Zz EP/Zz++

(2,3) 1.48 232.59 12.65 7.43 12.66 7.62

(2,8) 0.35 230.71 12.64 7.43 12.68 7.68

(4,5) 992.63 445.69 17.25 1.97 17.12 2.00

(4,8) 155.84 452.51 14.38 4.78 14.38 4.79

(6,4) 148.17 491.63 17.51 2.27 17.41 2.31

(6,7) 13114.24 460.14 18.96 2.42 18.81 2.49

(9,4) 56.77 457.24 17.48 2.27 17.43 2.35

(9,9) 3679.47 480.95 20.70 3.04 20.54 3.13

Table 4. The value of 𝑍 2

𝜌2
with varying 𝑝, 𝑞 (Amazon)

(𝒑, 𝒒) Zz Zz++ EP/Zz EP/Zz++

(2, 3) 3.45e+02 1.08e+02 2.94e+02 7.69e+01
(2, 8) 1.65e+04 5.15e+03 1.40e+04 3.68e+03
(4, 5) 2.52e+03 6.01e+04 2.51e+03 5.98e+04

(4, 8) 1.04e+04 2.49e+05 1.04e+04 2.48e+05

(6, 4) 2.44e+03 5.82e+04 2.43e+03 5.80e+04

(6, 7) 2.13e+04 5.32e+07 2.13e+04 5.32e+07

(9, 4) 2.24e+04 5.34e+05 2.23e+04 5.32e+05

(9, 9) 3.32e+04 8.01e+10 3.32e+04 8.01e+10
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Fig. 10. Estimation errors of Zz with various
𝜌 .
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value of 𝑝 and 𝑞. The three networks in each column are
from the same domain and they share similar properties.

can be seen, all our algorithms are substantially faster than BC. In general, the running time of EP
is relatively stable when varying 𝑝 and 𝑞, and EP also significantly outperforms BC when both 𝑝

and 𝑞 are relatively large (e.g., 𝑝 = 𝑞 = 8). We can also observe that our sampling-based algorithms

are generally much faster than both EP and BC for relatively-large 𝑝 and 𝑞. Zz++ achieves the

lowest runtime which is up to three orders of magnitude faster than the baseline algorithm BC.
For example, when 𝑝 = 𝑞 = 9, Zz++ only takes 3.04 seconds to count the (9, 9)-bicliques, while
BC consumes 3679.47 seconds. These results further confirm the high efficiency of the proposed

algorithms.

The value of 𝑍 2

𝜌2
.Theorem 4.9 shows that the sample size𝑇 depends on

𝑍 2

𝜌2
, where𝑍 = max𝑋 ∈𝐻 𝑐 (𝑋 )

and 𝜌 =
(
max{𝑝,𝑞}
min{𝑝,𝑞}

)
|B|/|H |. Since it is very costly to compute 𝑐 (𝑋 ) for each ℎ-zigzag 𝑋 , we sample

a set of ℎ-zigzagsH ′ and use 𝑍 =𝑚𝑎𝑥𝑋 ∈H′𝑐 (𝑋 ) as an estimation of 𝑍 . Table 4 reports the results

of
𝑍 2

𝜌2
on Amazon with varying 𝑝 and 𝑞. As can be seen, the value of

𝑍 2

𝜌2
in Zz is smaller than that of

Zz++, especially when 𝑝 and 𝑞 is large. When integrating our exact counting technique, the value

of
𝑍 2

𝜌2
in each sampling-based algorithm decreases for all 𝑝 and 𝑞, which confirms the analysis in

Section 5.

Estimation error of Zz with various 𝜌 . Here we study the accuracy of our Zz algorithm with

various 𝜌 . To this end, we first generate 100 random bipartite graphs with various edge densities

by the classic Erdos-Renyi random graph model. Then, we use Zz with 𝑇 = 10
6
to estimate the

(𝑝, 𝑞)-biclique counts on these random bipartite graphs. Fig. 10 shows a scatter-plot on estimation

error of (4, 4)-biclique versus 𝜌 . The results for estimating other small (𝑝, 𝑞)-bicliques are consistent.
From Fig. 10, we can see that our algorithm performs very well even when 𝜌 is very small. For
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Table 5. Results of the graph partition strat-
egy

Networks Sparse Dense

|𝑆 | (2, 2) |𝐷 | (2, 2)

Github 48,169 5.09e+05 8,350 5.04e+07

StackOF 533,949 8.62e+05 11,246 1.74e+07

Twitter 92,985 2.01e+06 82,229 2.04e+08

IMDB 654,744 1.81e+06 30,824 9.99e+06

Actor2 224,383 3.46e+06 79,234 1.96e+07

Amazon 2,108,102 2.71e+06 37,955 3.31e+07

DBLP 1,929,341 1.47e+07 23,744 1.70e+07

Table 6. Results of finding the (𝑝, 𝑞)-biclique densest sub-
graph

Networks (𝑝,𝑞) 𝐶𝑝,𝑞
Time (s) Density

peeling exact peeling exact

Dbpedia (2, 2) 1.1e+06 6.7e+01 1.8e+02 249.33 249.63

Dbpedia (5, 5) 2.9e+03 6.6e-01 1.6e+00 105.37 105.37

IMDB (2, 2) 1.2e+07 7.2e+01 4.2e+03 2638.01 2638.01

IMDB (5, 5) 1.8e+09 1.4e+01 INF 1.4e+07 -

Amazon (2, 2) 3.6e+07 6.0e+02 3.5e+04 2383.19 2383.42

Amazon (5, 5) 6.6e+08 1.0e+02 INF 4.7e+06 -

DBLP (2, 2) 3.2e+07 7.9e+03 INF 6.6e+02 -

DBLP (5, 5) 1.3e+08 6.1e+00 INF 2.2e+06 -

example, even when 𝜌 ≤ 0.02, the estimation errors of Zz are still less than 3.5% on all random

bipartite graphs. This result further confirms the high efficiency of our algorithm.

Evaluation of the graph partition strategy. Table 5 shows the size of the sparse region and

dense region divided by Algorithm 7, as well as the count of (2, 2)-bicliques in each region on all

datasets. The counts of (𝑝, 𝑞)-bicliques for other 𝑝 and 𝑞 are consistent. From Table 5, we can see

that the sparse region occupies a large part of the entire graph, but it contains a very small portion

of (2, 2)-bicliques on most datasets. The results indicate that our heuristic graph partition strategy

is indeed very effective for partitioning the bipartite graph into sparse and dense regions.

7.2 Applications of (𝑝, 𝑞)-biclique counting

Higher-order clustering coefficient. In this experiment, we use 12 real-life datasets (downloaded

from http://konect.cc/) selected from four different domains. We plot theℎ𝑐𝑐𝑝,𝑞 and the total running

time for all pairs of (𝑝, 𝑞) with 𝑝 = 𝑞 < 10 in Fig. 11. We can see that the higher-order clustering

coefficient of the datasets in the same domain have similar distributions, which is also consistent

with the results in [37] for traditional graphs. The ℎ𝑐𝑐𝑝,𝑞 in the first three columns varies by orders

of magnitude with varying 𝑝 and 𝑞. However, the changes in the authorship networks (the fourth

column) are all within the same order of magnitude. These results indicate that the higher-order

clustering coefficient can characterize the internal nature of the data. Moreover, by observing the

running time in Fig. 11, we can clearly see that our biclique counting algorithm is very efficient to

compute ℎ𝑐𝑐𝑝,𝑞 . These results confirm the efficiency and effectiveness of our solutions.

Finding the (𝑝, 𝑞)-biclique densest subgraph. We compare our peeling algorithm and the exact

algorithm [21] to identify the (𝑝, 𝑞)-biclique densest subgraph. Table 6 shows the results, where
“INF” means that the algorithm runs out of memory. As can be seen, the result quality obtained

by our peeling algorithm is almost the same as that returned by the exact algorithm. However,

the running time of our peeling algorithm is at least one order of magnitude faster than the exact

algorithm on most datasets. The exact algorithm is intractable on many datasets, since it needs

to construct a flow network based on all (𝑝, 𝑞)-bicliques. For example, on IMDB, when 𝑝 = 𝑞 = 2,

our algorithm takes 72 seconds, while the exact algorithm consumes 4200 seconds. These results

indicate that the proposed peeling algorithm, which is based on our biclique counting technique,

is indeed very efficient and effective for mining the higher-order densest subgraph in bipartite

graphs.

8 RELATEDWORK

𝐾-clique counting. Our work is closely related to the 𝑘-clique counting problem. The first exact

𝑘-clique counting (or listing) algorithm was proposed in [9] based on a backtracking enumeration

technique. Such an algorithm is recently optimized by using ordering-based techniques, including
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the degeneracy ordering optimization proposed by Danisch et al. [10], and the color ordering

optimization developed by Li et al. [17]. All these algorithms are enumeration based algorithms,

thus they only work well when 𝑘 is small. To improve the efficiency, Jain and Seshadhri [13]

developed an elegant algorithm, called PIVOTER, based on the pivoting technique for maximal

clique enumeration [7, 27]. The PIVOTER algorithm can count the 𝑘-cliques for all 𝑘 using a

combinatorial counting technique, instead of exhaustively enumerating all 𝑘-cliques, thus it is

substantially more efficient than all the enumeration-based algorithms. However, PIVOTER may

also be very costly when processing large dense graphs [13]. To overcome this limitation, sampling-

based solutions are also proposed. The state-of-the-art sampling based algorithms include the

TuranShadow algorithm [12] and its improved version [14] proposed by Jain and Seshadhri, as

well as the color-based sampling algorithm developed by Ye et al. [36]. All these sampling-based

algorithms, however, also perform poorly when 𝑘 is large. It is worth mentioning that there exist

many other sampling-based algorithms for counting small subgraphs [3, 5, 15, 23, 33]. All of these

algorithms were shown to be less efficient than the TuranShadow algorithm [12, 14] and the color-

based sampling algorithm [36] for counting 𝑘-cliques. Unlike all these studies, our work focuses

mainly on counting bicliques in bipartite graph, and all the previous techniques cannot be directly

extended to handle our problems.

Subgraph enumeration in bipartite graphs. Our work is also closely related to the small

subgraph enumeration problem in bipartite graphs. Butterfly, a notable small subgraph in bipartite

graphs, has attractedmuch attention in recent years. There have beenmany techniques to enumerate

(or count) butterflies in a bipartite graph, including both exact algorithms [24, 29–31, 34, 41] and

approximation algorithms [18, 24, 25, 41]. Recently, another type of small subgraph in bipartite

graphs, called bi-triangle or called 6-cycle, was introduced in [35], and a wedge-based algorithm

for listing all bi-triangles was also proposed in [35]. In addition to small subgraph enumeration, the

problem of enumerating maximal bicliques in bipartite graphs is also widely studied in recent years.

One impressive work is the iMBEA algorithm developed by Zhang et al. [40] which is mainly based

on a set enumeration tree technique. Abidi et al. [1] introduced a vertex-based pivoting technique,

namely PMBEA, to solve this problem. Their pivoting technique, however, needs to construct a

set containment DAG (directed acyclic graph) among all vertices’ neighbor-sets, which is often

costly in large graphs. Chen et al. [8] further presented an algorithm called ooMBEA to speed up

the enumeration of iMBEA with a total search order optimization. In this work, we develop a novel

edge-pivoting technique that can also be used for maximal biclique enumeration, although we

focus mainly on using the edge-pivoting technique for biclique counting.

9 CONCLUSION
In this paper, we systematically investigate the problem of counting (𝑝, 𝑞)-bicliques. We first

propose an exact algorithm, called EPivoter, based on a novel edge-pivoting technique. Then, we

propose two approximate algorithms, called ZigZag and ZigZag++, based on a novel dynamic

programming based ℎ-zigzag sampling technique. We further develop a hybrid algorithm based on

a carefully-designed graph partition strategy. A nice feature of all our algorithms is that they can

count the (𝑝, 𝑞)-bicliques for all pairs of (𝑝, 𝑞), while previous algorithms are mainly tailored to

count the (𝑝, 𝑞)-bicliques with only one pair of (𝑝, 𝑞). Extensive experiments on several real-life

bipartite graphs demonstrate the high efficiency and effectiveness of the proposed solutions.
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